39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies for Detection of Plasmodium species Gametocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carriage and density of gametocytes, the transmission stages of malaria parasites, are determined for predicting the infectiousness of humans to mosquitoes. This measure is used for evaluating interventions that aim at reducing malaria transmission. Gametocytes need to be detected by amplification of stage-specific transcripts, which requires RNA-preserving blood sampling. For simultaneous, highly sensitive quantification of both, blood stages and gametocytes, we have compared and optimized different strategies for field and laboratory procedures in a cross sectional survey in 315 5-9 yr old children from Papua New Guinea. qRT-PCR was performed for gametocyte markers pfs25 and pvs25, Plasmodium species prevalence was determined by targeting both, 18S rRNA genes and transcripts. RNA-based parasite detection resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried gametocytes. P. vivax positivity was 38.4%, with 38.0% of these carrying gametocytes. Sensitivity of DNA-based parasite detection was substantially lower with 14.1% for P. falciparum and 19.6% for P. vivax . Using the lower DNA-based prevalence of asexual stages as a denominator increased the percentage of gametocyte-positive infections to 59.1% for P. falciparum and 52.4% for P. vivax . For studies requiring highly sensitive and simultaneous quantification of sexual and asexual parasite stages, 18S rRNA transcript-based detection saves efforts and costs. RNA-based positivity is considerably higher than other methods. On the other hand, DNA-based parasite quantification is robust and permits comparison with other globally generated molecular prevalence data. Molecular monitoring of low density asexual and sexual parasitaemia will support the evaluation of effects of up-scaled antimalarial intervention programs and can also inform about small scale spatial variability in transmission intensity.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Improved synchronous production of Plasmodium falciparum gametocytes in vitro.

          The sexual stages of the Plasmodium falciparum life cycle are attractive targets for vaccines and transmission blocking drugs. Difficulties in culturing and obtaining large amounts of sexual stage P. falciparum parasites, particularly early stages, have often limited research progress in this area. We present a new protocol which simplifies the process of stimulating gametocytogenesis leading to improved synchronous gametocyte production. This new method can be adapted to enrich for early stage gametocytes (I and II) with a higher degree of purity than has previously been achieved, using MACS magnetic affinity columns. The protocol described lends itself to large scale culturing and harvesting of synchronous parasites suitable for biochemical assays, northern blots, flow cytometry, microarrays and proteomic analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Substantial Contribution of Submicroscopical Plasmodium falciparum Gametocyte Carriage to the Infectious Reservoir in an Area of Seasonal Transmission

            Background Man to mosquito transmission of malaria depends on the presence of the sexual stage parasites, gametocytes, that often circulate at low densities. Gametocyte densities below the microscopical threshold of detection may be sufficient to infect mosquitoes but the importance of submicroscopical gametocyte carriage in different transmission settings is unknown. Methodology/Principal Findings Membrane feeding experiments were carried out on 80 children below 14 years of age at the end of the wet season in an area of seasonal malaria transmission in Burkina Faso. Gametocytes were quantified by microscopy and by Pfs25-based quantitative nucleic acid sequence-based amplification assay (QT-NASBA). The children's infectiousness was determined by membrane feeding experiments in which a venous blood sample was offered to locally reared Anopheles mosquitoes. Gametocytes were detected in 30.0% (24/80) of the children by microscopy compared to 91.6% (65/71) by QT-NASBA (p<0.001). We observed a strong association between QT-NASBA gametocyte density and infection rates (p = 0.007). Children with microscopically detectable gametocytes were more likely to be infectious (68.2% compared to 31.7% of carriers of submicroscopical gametocytes, p = 0.001), and on average infected more mosquitoes (13.2% compared to 2.3%, p<0.001). However, because of the high prevalence of submicroscopical gametocyte carriage in the study population, carriers of sub-microscopical gametocytes were responsible for 24.2% of the malaria transmission in this population. Conclusions/Significance Submicroscopical gametocyte carriage is common in an area of seasonal transmission in Burkina Faso and contributes substantially to the human infectious reservoir. Submicroscopical gametocyte carriage should therefore be considered when implementing interventions that aim to reduce malaria transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection

              Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feeding assays conducted in Burkina Faso and Kenya. Plasmodium falciparum infects Anopheles gambiae efficiently at low densities (4% mosquitoes at 1/µl blood), although substantially more (>200/µl) are required to increase infection further. In a site in Burkina Faso, children harbour more gametocytes than adults though the non-linear relationship between gametocyte density and mosquito infection means that (per person) they only contribute slightly more to transmission. This method can be used to determine the reservoir of infection in different endemic settings. Interventions reducing gametocyte density need to be highly effective in order to halt human–mosquito transmission, although their use can be optimised by targeting those contributing the most to transmission. DOI: http://dx.doi.org/10.7554/eLife.00626.001
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 September 2013
                : 8
                : 9
                : e76316
                Affiliations
                [1 ]Swiss Tropical and Public Health Institute, Basel, Switzerland
                [2 ]University of Basel, Basel, Switzerland
                [3 ]Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
                [4 ]Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
                Institut Pasteur, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Analyzed the data: RW IF. Wrote the manuscript: IF. Conceived the field study: IM. Designed molecular work: IF. Extracted nucleic acids from various blood sampling strategies: RW FM SJ. Developed and validated quantification of parasite stages: RW. Conducted and supervised sample collection in the field: IB LR PS. Supported test development and provided materials for assay validation: HPB.

                Article
                PONE-D-13-16859
                10.1371/journal.pone.0076316
                3848260
                24312682
                dadcfd22-7b5f-47dd-b7d2-e4785df03d80
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 April 2013
                : 23 August 2013
                Funding
                This work was supported by the Swiss National Science Foundation (grant no. 310030_134889), the International Centers of Excellence in Malaria Research (grant no. U19 AI089686-03) and the Brazilian Swiss Joint Research Programme (grant no. BJRP 0112-07). L. Robinson was supported by an Australian National Health and Medical Research Council Early Career Fellowship #1016443. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article