The co-conversion of methane and mixtures of volatile fatty acids into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) expands the potential of an integrated biorefinery
There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
<p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto"
id="d9425957e99">In this work, the potential of Methylocystis hirsuta to simultaneously
use methane
and volatile fatty acids mixtures for triggering PHBV accumulation was assessed for
the first time batchwise. Biotic controls carried out with CH4 alone confirmed the
inability of Methylocystis hirsuta to produce PHBV and achieved 71.2 ± 7 g m-3d-1
of PHB. Pure valeric acid and two synthetic mixtures simulating VFAs effluents from
the anaerobic digestion of food waste at 35 °C (M1) and 55 °C (M2) were supplied to
promote 3-HV inclusion. Results showed that pure valeric acid supported the highest
polymer yields of 105.8 ± 9 g m-3d-1 (3-HB:3-HV=70:30). M1 mixtures led to a maximum
of 103 ± 4 g m-3d-1 of PHBV (3-HB:3-HV=85:15), while M2 mixtures, which did not include
valeric acid, showed no PHV synthesis. This suggested that the synthesis of PHBV from
VFAs effluents depends on the composition of the mixtures, which can be tuned during
the anaerobic digestion process.
</p>
Small plastic detritus, termed "microplastics", are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish, and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bioimaging techniques to document ingestion, egestion, and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7-30.6 μm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets laden with microplastics. We further observed microplastics adhered to the external carapace and appendages of exposed zooplankton. Exposure of the copepod Centropages typicus to natural assemblages of algae with and without microplastics showed that 7.3 μm microplastics (>4000 mL(-1)) significantly decreased algal feeding. Our findings imply that marine microplastic debris can negatively impact upon zooplankton function and health.
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded.
Experiments were carried out with different Baltic Sea zooplankton taxa to scan their potential to ingest plastics. Mysid shrimps, copepods, cladocerans, rotifers, polychaete larvae and ciliates were exposed to 10 μm fluorescent polystyrene microspheres. These experiments showed ingestion of microspheres in all taxa studied. The highest percentage of individuals with ingested spheres was found in pelagic polychaete larvae, Marenzelleria spp. Experiments with the copepod Eurytemora affinis and the mysid shrimp Neomysis integer showed egestion of microspheres within 12 h. Food web transfer experiments were done by offering zooplankton labelled with ingested microspheres to mysid shrimps. Microscopy observations of mysid intestine showed the presence of zooplankton prey and microspheres after 3 h incubation. This study shows for the first time the potential of plastic microparticle transfer via planktonic organisms from one trophic level (mesozooplankton) to a higher level (macrozooplankton). The impacts of plastic transfer and possible accumulation in the food web need further investigations.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.