19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-incompatibility

      review-article
      F1000 Biology Reports
      Faculty of 1000 Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are several different types of self-incompatibility in different flowering plant species, and there has recently been progress in understanding their molecular genetics by using combined molecular and evolutionary approaches. Questions include the mechanism of self-incompatibility (both the nature of the proteins encoded by the genes and whether incompatibility systems all have separate genes for the pollen and pistil recognition proteins, which is the focus of this mini-review) and whether these systems involve chromosome regions with suppressed recombination and, if so, the size of these regions.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana.

          As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene.

            Ever since Darwin's pioneering research, the evolution of self-fertilisation (selfing) has been regarded as one of the most prevalent evolutionary transitions in flowering plants. A major mechanism to prevent selfing is the self-incompatibility (SI) recognition system, which consists of male and female specificity genes at the S-locus and SI modifier genes. Under conditions that favour selfing, mutations disabling the male recognition component are predicted to enjoy a relative advantage over those disabling the female component, because male mutations would increase through both pollen and seeds whereas female mutations would increase only through seeds. Despite many studies on the genetic basis of loss of SI in the predominantly selfing plant Arabidopsis thaliana, it remains unknown whether selfing arose through mutations in the female specificity gene (S-receptor kinase, SRK), male specificity gene (S-locus cysteine-rich protein, SCR; also known as S-locus protein 11, SP11) or modifier genes, and whether any of them rose to high frequency across large geographic regions. Here we report that a disruptive 213-base-pair (bp) inversion in the SCR gene (or its derivative haplotypes with deletions encompassing the entire SCR-A and a large portion of SRK-A) is found in 95% of European accessions, which contrasts with the genome-wide pattern of polymorphism in European A. thaliana. Importantly, interspecific crossings using Arabidopsis halleri as a pollen donor reveal that some A. thaliana accessions, including Wei-1, retain the female SI reaction, suggesting that all female components including SRK are still functional. Moreover, when the 213-bp inversion in SCR was inverted and expressed in transgenic Wei-1 plants, the functional SCR restored the SI reaction. The inversion within SCR is the first mutation disrupting SI shown to be nearly fixed in geographically wide samples, and its prevalence is consistent with theoretical predictions regarding the evolutionary advantage of mutations in male components.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the pollen self-incompatibility determinant in Papaver rhoeas

              Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility (SI) is an important mechanism used in many species to prevent inbreeding, and is controlled by a multi-allelic S locus1,2. “Self” (incompatible) pollen is discriminated from “non-self” (compatible) pollen, by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca2+-dependent signalling network, resulting in pollen inhibition and programmed cell death3-7. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS, from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single copy gene linked to the pistil S gene, PrsS. Sequence analysis indicates that PrsS and PrpS are equally ancient and are likely to have co-evolved. PrpS encodes a novel ~20 kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver SI system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between “self” and “non-self”, which also include histocompatibility systems in primitive chordates and vertebrates.
                Bookmark

                Author and article information

                Contributors
                Journal
                F1000 Biol Rep
                F1000 Biology Reports
                Faculty of 1000 Ltd
                1757-594X
                08 September 2010
                2010
                : 2
                : 68
                Affiliations
                [1]simpleInstitute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratory King's Buildings, West Mains Road, Edinburgh, EH9 3JTUK
                Article
                68
                10.3410/B2-68
                2989624
                21173841
                da98b43b-445b-4d23-9c15-7c5456fad70e
                © 2010 Faculty of 1000 Ltd

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You may not use this work for commercial purposes

                History
                Categories
                Review Article

                Life sciences
                Life sciences

                Comments

                Comment on this article