51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gut microbiota are related to Parkinson's disease and clinical phenotype

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the course of Parkinson's disease (PD), the enteric nervous system (ENS) and parasympathetic nerves are amongst the structures earliest and most frequently affected by alpha-synuclein pathology. Accordingly, gastrointestinal dysfunction, in particular constipation, is an important non-motor symptom in PD and often precedes the onset of motor symptoms by years. Recent research has shown that intestinal microbiota interact with the autonomic and central nervous system via diverse pathways including the ENS and vagal nerve. The gut microbiome in PD has not been previously investigated. We compared the fecal microbiomes of 72 PD patients and 72 control subjects by pyrosequencing the V1-V3 regions of the bacterial 16S ribosomal RNA gene. Associations between clinical parameters and microbiota were analyzed using generalized linear models, taking into account potential confounders. On average, the abundance of Prevotellaceae in feces of PD patients was reduced by 77.6% as compared with controls. Relative abundance of Prevotellaceae of 6.5% or less had 86.1% sensitivity and 38.9% specificity for PD. A logistic regression classifier based on the abundance of four bacterial families and the severity of constipation identified PD patients with 66.7% sensitivity and 90.3% specificity. The relative abundance of Enterobacteriaceae was positively associated with the severity of postural instability and gait difficulty. These findings suggest that the intestinal microbiome is altered in PD and is related to motor phenotype. Further studies are warranted to elucidate the temporal and causal relationships between gut microbiota and PD and the suitability of the microbiome as a biomarker.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans.

            Epidemiologic studies have suggested that most cases of sporadic colon cancer can be attributed to diet. The recognition that colonic microbiota have a major influence on colonic health suggests that they might mediate colonic carcinogenesis. To examine the hypothesis that the influence of diet on colon cancer risk is mediated by the microbiota through their metabolites, we measured differences in colonic microbes and their metabolites in African Americans with a high risk and in rural native Africans with a low risk of colon cancer. Fresh fecal samples were collected from 12 healthy African Americans aged 50-65 y and from 12 age- and sex-matched native Africans. Microbiomes were analyzed with 16S ribosomal RNA gene pyrosequencing together with quantitative polymerase chain reaction of the major fermentative, butyrate-producing, and bile acid-deconjugating bacteria. Fecal short-chain fatty acids were measured by gas chromatography and bile acids by liquid chromatography-mass spectrometry. Microbial composition was fundamentally different, with a predominance of Prevotella in native Africans (enterotype 2) and of Bacteroides in African Americans (enterotype 1). Total bacteria and major butyrate-producing groups were significantly more abundant in fecal samples from native Africans. Microbial genes encoding for secondary bile acid production were more abundant in African Americans, whereas those encoding for methanogenesis and hydrogen sulfide production were higher in native Africans. Fecal secondary bile acid concentrations were higher in African Americans, whereas short-chain fatty acids were higher in native Africans. Our results support the hypothesis that colon cancer risk is influenced by the balance between microbial production of health-promoting metabolites such as butyrate and potentially carcinogenic metabolites such as secondary bile acids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-motor symptoms in Parkinson's disease.

              W Poewe (2008)
              Although still considered a paradigmatic movement disorder, Parkinson's disease (PD) is associated with a broad spectrum of non-motor symptoms. These include disorders of mood and affect with apathy, anhedonia and depression, cognitive dysfunction and hallucinosis, as well as complex behavioural disorders. Sensory dysfunction with hyposmia or pain is almost universal, as are disturbances of sleep-wake cycle regulation. Autonomic dysfunction including orthostatic hypotension, urogenital dysfunction and constipation is also present to some degree in a majority of patients. Whilst overall non-motor symptoms become increasingly prevalent with advancing disease, many of them can also antedate the first occurrence of motor signs - most notably depression, hyposmia or rapid eye movement sleep behaviour disorder (RBD). Although exact clinicopathological correlations for most of these non-motor features are still poorly understood, the occurrence of constipation, RBD or hyposmia prior to the onset of clinically overt motor dysfunction would appear consistent with the ascending hypothesis of PD pathology proposed by Braak and colleagues. Screening these early non-motor features might, therefore, be one approach towards early 'preclinical' diagnosis of PD. This review article provides an overview of the clinical spectrum of non-motor symptoms in PD together with a brief review of treatment options.
                Bookmark

                Author and article information

                Journal
                Movement Disorders
                Mov Disord.
                Wiley
                0885-3185
                1531-8257
                October 30 2014
                March 2015
                December 05 2014
                March 2015
                : 30
                : 3
                : 350-358
                Affiliations
                [1 ]Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
                [2 ]Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
                [3 ]Department of NeurologyHyvinkää HospitalHyvinkää Finland
                Article
                10.1002/mds.26069
                25476529
                da8923c4-fe62-42fc-88ae-af1457367958
                © 2015

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article