10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Derailment risk: A systems analysis that identifies risks which could derail the sustainability transition

      , ,
      Earth System Dynamics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The consequences of climate change, nature loss, and other changes to the Earth system will impact societies' ability to tackle the causes of these problems. There are extensive agendas of study and action on the risks resulting from changes in the Earth system. These consider the failure to realise rapid sustainability transitions to date (“physical risk”) and the risks resulting from these transitions going forward (“transition risk”). Yet there is no established agenda on the risks to sustainability transitions from both physical and transition risks and their knock-on consequences. In response, we develop a conceptual socio-ecological systems model that explores how the escalating consequences of changes in the Earth system impacts the ability of societies to undertake work on environmental action that, in turn, re-stabilises natural systems. On one hand, these consequences can spur processes of political, economic, and social change that could accelerate the growth in work done, as societies respond constructively to tackle the causes of a less stable world. Conversely, escalating demands to manage increasingly chaotic conditions could divert work and political support from environmental action, deepening changes in the Earth system. If the latter dynamic dominates over the former, the chance is increased of passing a planetary threshold over which human agency to re-stabilise the natural world is severely impaired. We term this “derailment risk”: the risk that the journey to bring the world back into a safe operating space is derailed by interacting biophysical and socio-economic factors. We use a case study of a climate tipping element – the collapse of the Atlantic Meridional Overturning Circulation (AMOC) – to illustrate derailment risk. A range of policy responses can identify and mitigate derailment risk, including transformational adaptation. Acting on derailment risk is a critical requirement for accelerating the re-stabilisation of Earth system elements and avoiding catastrophic outcomes.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found

          Planetary boundaries: Guiding human development on a changing planet

          The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature increase reduces global yields of major crops in four independent estimates.

              Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
                Bookmark

                Author and article information

                Contributors
                Journal
                Earth System Dynamics
                Earth Syst. Dynam.
                Copernicus GmbH
                2190-4987
                2023
                November 14 2023
                : 14
                : 6
                : 1171-1182
                Article
                10.5194/esd-14-1171-2023
                da8483df-3864-4dfa-9255-0e67585a4151
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article