11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanomedicine-based commercial formulations: current developments and future prospects

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In recent decades, there has been a considerable increase in the number of nanomedicine-based formulations, and their advantages, including controlled/targeted drug delivery with increased efficacy and reduced toxicity, make them ideal candidates for therapeutic delivery in the treatment of complex and difficult-to-treat diseases, such as cancer.

          Areas covered

          This review focuses on nanomedicine-based formulation development, approved and marketed nanomedicines, and the challenges faced in nanomedicine development as well as their future prospects.

          Expert opinion

          To date, the Food and Drug Administration and the European Medicines Agency have approved several nanomedicines, which are now commercially available. However, several critical challenges, including reproducibility, proper characterization, and biological evaluation, e.g., via assays, are still associated with their use. Therefore, rigorous studies alongside stringent guidelines for effective and safe nanomedicine development and use are still warranted. In this study, we provide an overview of currently available nanomedicine-based formulations. Thus, the findings here reported may serve as a basis for further studies regarding the use of these formulations for therapeutic purposes in near future.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering precision nanoparticles for drug delivery

          In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nano based drug delivery systems: recent developments and future prospects

            Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Doxil®--the first FDA-approved nano-drug: lessons learned.

              Doxil®, the first FDA-approved nano-drug (1995), is based on three unrelated principles: (i) prolonged drug circulation time and avoidance of the RES due to the use of PEGylated nano-liposomes; (ii) high and stable remote loading of doxorubicin driven by a transmembrane ammonium sulfate gradient, which also allows for drug release at the tumor; and (iii) having the liposome lipid bilayer in a "liquid ordered" phase composed of the high-T(m) (53 °C) phosphatidylcholine, and cholesterol. Due to the EPR effect, Doxil is "passively targeted" to tumors and its doxorubicin is released and becomes available to tumor cells by as yet unknown means. This review summarizes historical and scientific perspectives of Doxil development and lessons learned from its development and 20 years of its use. It demonstrates the obligatory need for applying an understanding of the cross talk between physicochemical, nano-technological, and biological principles. However, in spite of the large reward, ~2 years after Doxil-related patents expired, there is still no FDA-approved generic "Doxil" available. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                rkthapa@gandakiuniversity.edu.np
                jongohkim@yu.ac.kr
                Journal
                J Pharm Investig
                J Pharm Investig
                Journal of Pharmaceutical Investigation
                Springer Nature Singapore (Singapore )
                2093-5552
                2093-6214
                19 December 2022
                : 1-15
                Affiliations
                [1 ]Pharmacy Program, Gandaki University, Gyankunja, Pokhara-32, Kaski, Nepal
                [2 ]GRID grid.413028.c, ISNI 0000 0001 0674 4447, College of Pharmacy, , Yeungnam University, ; 214-1 Dae-dong, Gyeongsan, 712-749 Republic of Korea
                Article
                607
                10.1007/s40005-022-00607-6
                9761651
                36568502
                da5a75f6-9139-4a1d-b5e7-4db013e517b3
                © The Author(s) under exclusive licence to The Korean Society of Pharmaceutical Sciences and Technology 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 21 November 2022
                : 10 December 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002649, Yeungnam University;
                Categories
                Review

                commercial formulations,clinical trials,nanomedicines,pharmacokinetics

                Comments

                Comment on this article