0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      G‐CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          A Threshold Selection Method from Gray-Level Histograms

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidelines for assessment of bone microstructure in rodents using micro-computed tomography.

            Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of microCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present microCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting microCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results. 2010 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular details of cytokine signaling via the JAK/STAT pathway

              More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine‐based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain‐containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine‐induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Bone and Mineral Research
                J of Bone & Mineral Res
                Wiley
                0884-0431
                1523-4681
                October 2022
                August 12 2022
                October 2022
                : 37
                : 10
                : 1876-1890
                Affiliations
                [1 ]St. Vincent's Institute of Medical Research Fitzroy Australia
                [2 ]Department of Pediatrics Teikyo University School of Medicine Tokyo Japan
                [3 ]Walter and Eliza Hall Institute Parkville Australia
                [4 ]Bio21 Molecular Science and Biotechnology Institute Parkville Australia
                [5 ]The University of Melbourne Department of Medicine at St. Vincent's Hospital Fitzroy Australia
                Article
                10.1002/jbmr.4654
                35856245
                da507cb2-17c8-4768-8c4c-4edcfae85039
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article