10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copper-dependent autophagic degradation of GPX4 drives ferroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Ferroptosis is a type of iron-dependent regulated cell death characterized by unrestricted lipid peroxidation and membrane damage. Although GPX4 (glutathione peroxidase 4) plays a master role in blocking ferroptosis by eliminating phospholipid hydroperoxides, the regulation of GPX4 remains poorly understood. Here, we report an unexpected role for copper in promoting ferroptotic cell death, but not cuproptosis, by inducing macroautophagic/autophagic degradation of GPX4. Copper chelators reduce ferroptosis sensitivity but do not inhibit other types of cell death, such as apoptosis, necroptosis, and alkaliptosis. Conversely, exogenous copper increases GPX4 ubiquitination and the formation of GPX4 aggregates by directly binding to GPX4 protein cysteines C107 and C148. TAX1BP1 (Tax1 binding protein 1) then acts as an autophagic receptor for GPX4 degradation and subsequent ferroptosis in response to copper stress. Consequently, copper enhances ferroptosis-mediated tumor suppression in a mouse model of pancreatic cancer tumor, whereas copper chelators attenuate experimental acute pancreatitis associated with ferroptosis. Taken together, these findings provide new insights into the link between metal stress and autophagy-dependent cell death.

          Abbreviations: CALCOCO2, calcium binding and coiled-coil domain 2; GPX4, glutathione peroxidase 4; MAP1LC3A/B, microtubule associated protein 1 light chain 3 alpha/beta; MPO, myeloperoxidase; NCOA4, nuclear receptor coactivator 4; OPTN, optineurin; PDAC, pancreatic ductal adenocarcinoma; RIPK1, receptor interacting serine/threonine kinase 1; ROS, reactive oxygen species; SLC40A1, solute carrier family 40 member 1; SQSTM1, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TM, tetrathiomolybdate.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of ferroptotic cancer cell death by GPX4.

          Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Copper induces cell death by targeting lipoylated TCA cycle proteins

            Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms. Cell death is an essential, finely tuned process that is critical for the removal of damaged and superfluous cells. Multiple forms of programmed and nonprogrammed cell death have been identified, including apoptosis, ferroptosis, and necroptosis. Tsvetkov et al . investigated whether abnormal copper ion elevations may sensitize cells toward a previously unidentified death pathway (see the Perspective by Kahlson and Dixon). By performing CRISPR/Cas9 screens, several genes were identified that could protect against copper-induced cell killing. Using genetically modified cells and a mouse model of a copper overload disorder, the researchers report that excess copper promotes the aggregation of lipoylated proteins and links mitochondrial metabolism to copper-dependent death. —PNK Lipoylation determines sensitivity to copper-induced cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD8 + T cells regulate tumor ferroptosis during cancer immunotherapy

              Summary Cancer immunotherapy restores and/or enhances effector function of CD8+ T cells in the tumor microenvironment 1,2 . CD8+ T cells activated by cancer immunotherapy execute tumor clearance mainly by inducing cell death through perforin-granzyme- and Fas/Fas ligand-pathways 3,4 . Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent lipid peroxide accumulation 5,6 . Although it was mechanistically illuminated in vitro 7,8 , emerging evidence has shown that ferroptosis may be implicated in a variety of pathological scenarios 9,10 . However, the involvement of ferroptosis in T cell immunity and cancer immunotherapy is unknown. Here, we find that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumor cells, and in turn, increased ferroptosis contributes to the anti-tumor efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates expression of SLC3A2 and SLC7A11, two subunits of glutamate-cystine antiporter system xc-, restrains tumor cell cystine uptake, and as a consequence, promotes tumor cell lipid peroxidation and ferroptosis. In preclinical models, depletion of cyst(e)ine by cyst(e)inase in combination with checkpoint blockade synergistically enhances T cell-mediated anti-tumor immunity and induces tumor cell ferroptosis. Expression of system xc- is negatively associated with CD8+ T cell signature, IFNγ expression, and cancer patient outcome. Transcriptome analyses before and during nivolumab therapy reveal that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumor ferroptosis is a novel anti-tumor mechanism. Targeting tumor ferroptosis pathway constitutes a therapeutic approach in combination with checkpoint blockade.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                12 January 2023
                2023
                12 January 2023
                : 19
                : 7
                : 1982-1996
                Affiliations
                [a ]Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; , Guangzhou, China
                [b ]Department of Surgery, UT Southwestern Medical Center; , Dallas, TX, USA
                [c ]Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan; , Ann Arbor, MI, USA
                [d ]Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France; , Paris, France
                [e ]Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; , Villejuif, France
                [f ]Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP; , Paris, France
                Author notes
                Jinbao Liu jliu@ 123456gzhmu.edu.cn Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; , Guangzhou 511436, China
                Daolin Tang daolin.tang@ 123456utsouthwestern.edu Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
                Author information
                https://orcid.org/0000-0002-7828-8118
                https://orcid.org/0000-0002-1903-6180
                Article
                2165323
                10.1080/15548627.2023.2165323
                10283421
                36622894
                da24861e-d3df-4b63-b24c-0bad3f401025
                © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

                History
                Page count
                Figures: 7, Tables: 1, References: 69, Pages: 15
                Categories
                Research Article
                Research Paper

                Molecular biology
                autophagy,copper,cuproptosis,ferroptosis,gpx4,tax1bp1
                Molecular biology
                autophagy, copper, cuproptosis, ferroptosis, gpx4, tax1bp1

                Comments

                Comment on this article