0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Somatic Mutation Analysis in Salix suchowensis Reveals Early-Segregated Cell Lineages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-lived plants face the challenge of ever-increasing mutational burden across their long lifespan. Early sequestration of meristematic stem cells is supposed to efficiently slow down this process, but direct measurement of somatic mutations that accompanies segregated cell lineages in plants is still rare. Here, we tracked somatic mutations in 33 leaves and 22 adventitious roots from 22 stem-cuttings across eight major branches of a shrub willow ( Salix suchowensis). We found that most mutations propagated separately in leaves and roots, providing clear evidence for early segregation of underlying cell lineages. By combining lineage tracking with allele frequency analysis, our results revealed a set of mutations shared by distinct branches, but were exclusively present in leaves and not in roots. These mutations were likely propagated by rapidly dividing somatic cell lineages which survive several iterations of branching, distinct from the slowly dividing axillary stem cell lineages. Leaf is thus contributed by both slowly and rapidly dividing cell lineages, leading to varied fixation chances of propagated mutations. By contrast, each root likely arises from a single founder cell within the adventitious stem cell lineages. Our findings give straightforward evidence that early segregation of meristems slows down mutation accumulation in axillary meristems, implying a plant “germline” paralog to the germline of animals through convergent evolution.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

            Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the “CAT” approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interactive Tree Of Life (iTOL) v4: recent updates and new developments

              Abstract The Interactive Tree Of Life (https://itol.embl.de) is an online tool for the display, manipulation and annotation of phylogenetic and other trees. It is freely available and open to everyone. The current version introduces four new dataset types, together with numerous new features. Annotation options have been expanded and new control options added for many display elements. An interactive spreadsheet-like editor has been implemented, providing dataset creation and editing directly in the web interface. Font support has been rewritten with full support for UTF-8 character encoding throughout the user interface. Google Web Fonts are now fully supported in the tree text labels. iTOL v4 is the first tool which supports direct visualization of Qiime 2 trees and associated annotations. The user account system has been streamlined and expanded with new navigation options, and currently handles >700 000 trees from more than 40 000 individual users. Full batch access has been implemented allowing programmatic upload and export of trees and annotations.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol Biol Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                December 2021
                25 September 2021
                25 September 2021
                : 38
                : 12
                : 5292-5308
                Affiliations
                [1 ] State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, China
                [2 ] Department of Ecology, School of Life Science, Nanjing University , Nanjing, China
                [3 ] State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing, China
                Author notes

                Yifan Ren and Zhen He authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-7067-0558
                Article
                msab286
                10.1093/molbev/msab286
                8662653
                34562099
                d9b76093-6679-4fe7-acc9-a6652451fbca
                © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 17
                Funding
                Funded by: National Natural Science Foundation of China, DOI 10.13039/501100001809;
                Award ID: 31970236
                Award ID: 91631104
                Award ID: 31970517
                Award ID: 31900203
                Categories
                Discoveries
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                plant evolution,clonal variation,somatic mutation, salix mutation,plant cell lineage

                Comments

                Comment on this article