1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Catalytic activation of peroxydisulfate by alfalfa-derived nitrogen self-doped porous carbon supported CuFeO2 for nimesulide degradation: Performance, mechanism and DFT calculation

      , , , , , , ,
      Applied Catalysis B: Environmental
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions.

            Magnetic CuO-Fe3O4 composite was fabricated by a simple hydrothermal method and characterized as a heterogeneous catalyst for phenol degradation. The effects of pH and bicarbonate ions on catalytic activity were extensively evaluated in view of the practical applications. The results indicated that an increase of solution pH and the presence of bicarbonate ions were beneficial for the removal of phenol in the CuO-Fe3O4 coupled with persulfate (PS) process. Almost 100% mineralization of 0.1 mM phenol can be achieved in 120 min by using 0.3 g/L CuO-Fe3O4 and 5.0 mM PS at pH 11.0 or in the presence of 3.0 mM bicarbonate. The positive effect of bicarbonate ion is probably due to the suppression of copper leaching as well as the formation of Cu(III). The reuse of catalyst at pH0 11.0 and 5.6 showed that the catalyst remains a high level of stability at alkaline condition (e.g., pH0 11.0). On the basis of the characterization of catalyst, the results of metal leaching and EPR studies, it is suggested that phenol is mainly destroyed by the surface-adsorbed radicals and Cu(III) resulting from the reaction between PS and Cu(II) on the catalyst. Taking into account the widespread presence of bicarbonate ions in waste streams, the CuO-Fe3O4/PS system may provide some new insights for contaminant removal from wastewater.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms

                Bookmark

                Author and article information

                Journal
                Applied Catalysis B: Environmental
                Applied Catalysis B: Environmental
                Elsevier BV
                09263373
                October 2021
                October 2021
                : 294
                : 120247
                Article
                10.1016/j.apcatb.2021.120247
                d96c5a9f-0ae8-4eb0-bbd8-4f221adcbb4e
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article