Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus, with relatively high morbidity and mortality globally but still in short therapeutic options. Over the decades, a large body of data has demonstrated that oxidative stress, inflammatory responses, and hemodynamic disorders might exert critical influence in the initiation and development of DKD, whereas the delicate pathogenesis of DKD remains profoundly elusive. Recently, long non-coding RNAs (lncRNAs), extensively studied in the field of cancer, are attracting increasing attentions on the development of diabetes mellitus and its complications including DKD, diabetic retinopathy, and diabetic cardiomyopathy. In this review, we chiefly focused on abnormal expression and function of lncRNAs in major resident cells (mesangial cell, endothelial cell, podocyte, and tubular epithelial cell) in the kidney, summarized the critical roles of lncRNAs in the pathogenesis of DKD, and elaborated their potential therapeutic significance, in order to advance our knowledge in this field, which might help in future research and clinical treatment for the disease.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis: a review of programmed cell death.

          The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of epithelial-mesenchymal transition.

            The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death.

              Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                20 April 2022
                2022
                : 10
                : 845371
                Affiliations
                [1] 1 Department of Nephrology , Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
                [2] 2 Department of Nephrology , Shandong Provincial Hospital , Cheeloo College of Medicine , Shandong University , Jinan, China
                Author notes

                Edited by: Clara Barrios, Parc de Salut Mar, Spain

                Reviewed by: Farhad Danesh, University of Texas MD Anderson Cancer Center, United States

                Moshe Levi, Georgetown University, United States

                *Correspondence: Zhimei Lv, zhimeilv@ 123456sina.cn
                [ † ]

                These authors have contributed equally to this work

                This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                845371
                10.3389/fcell.2022.845371
                9065414
                35517509
                d952caaa-e6de-47be-a417-63235b9f079a
                Copyright © 2022 Hu, Ma, Liu, Wang, Zhang, Huang and Lv.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2021
                : 08 March 2022
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81873615 82070744 81770723
                Funded by: Natural Science Foundation of Shandong Province , doi 10.13039/501100007129;
                Award ID: ZR2020QH062
                Categories
                Cell and Developmental Biology
                Review

                long non-coding rna,diabetic kidney disease,mesangial cell,glomerular endothelial cell,podocyte,tubular epithelial cell,pathogenesis

                Comments

                Comment on this article