36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The JAK2 inhibitor TG101209 exhibits anti-tumor and chemotherapeutic sensitizing effects on Burkitt lymphoma cells by inhibiting the JAK2/STAT3/c-MYB signaling axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Constitutive activation of JAK2/STAT3 is a major oncogenic signaling event involved in the development of Burkitt lymphoma (BL). In the present study, we investigated the antilymphoma activity of TG101209, a specific JAK2 inhibitor, on EBV-positive and EBV-negative Burkitt lymphoma cell lines and primary BL cells. The results showed that TG101209 had a significant antilymphoma effect by inhibiting BL cell growth and inducing apoptosis along with cell differentiation toward mature B cells in vitro. We also found that TG101209 displayed significant synergistic action and a sensitizing effect on the anti-Burkitt lymphoma activity of doxorubicin. In vivo experiments indicated that TG101209 could suppress tumor growth and prolong the overall survival of BL cell-bearing mice. The mechanistic study indicated that TG101209, by suppressing the JAK2/STAT3/c-MYB signaling axis and crosstalk between the downstream signaling pathways, plays an antilymphoma role. These data suggested that TG101209 may be a promising agent or alternative choice for the treatment of BL.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.

          Classical Hodgkin lymphoma (cHL) and mediastinal large B-cell lymphoma (MLBCL) are lymphoid malignancies with certain shared clinical, histologic, and molecular features. Primary cHLs and MLBCLs include variable numbers of malignant cells within an inflammatory infiltrate, suggesting that these tumors escape immune surveillance. Herein, we integrate high-resolution copy number data with transcriptional profiles and identify the immunoregulatory genes, PD-L1 and PD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines. We extend these findings to laser-capture microdissected primary Hodgkin Reed-Sternberg cells and primary MLBCLs and find that programmed cell death-1 (PD-1) ligand/9p24.1 amplification is restricted to nodular sclerosing HL, the cHL subtype most closely related to MLBCL. Using quantitative immunohistochemical methods, we document the association between 9p24.1 copy number and PD-1 ligand expression in primary tumors. In cHL and MLBCL, the extended 9p24.1 amplification region also included the Janus kinase 2 (JAK2) locus. Of note, JAK2 amplification increased protein expression and activity, specifically induced PD-1 ligand transcription and enhanced sensitivity to JAK2 inhibition. Therefore, 9p24.1 amplification is a disease-specific structural alteration that increases both the gene dosage of PD-1 ligands and their induction by JAK2, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A gain-of-function mutation of JAK2 in myeloproliferative disorders.

            Polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are clonal myeloproliferative disorders arising from a multipotent progenitor. The loss of heterozygosity (LOH) on the short arm of chromosome 9 (9pLOH) in myeloproliferative disorders suggests that 9p harbors a mutation that contributes to the cause of clonal expansion of hematopoietic cells in these diseases. We performed microsatellite mapping of the 9pLOH region and DNA sequencing in 244 patients with myeloproliferative disorders (128 with polycythemia vera, 93 with essential thrombocythemia, and 23 with idiopathic myelofibrosis). Microsatellite mapping identified a 9pLOH region that included the Janus kinase 2 (JAK2) gene. In patients with 9pLOH, JAK2 had a homozygous G-->T transversion, causing phenylalanine to be substituted for valine at position 617 of JAK2 (V617F). All 51 patients with 9pLOH had the V617F mutation. Of 193 patients without 9pLOH, 66 were heterozygous for V617F and 127 did not have the mutation. The frequency of V617F was 65 percent among patients with polycythemia vera (83 of 128), 57 percent among patients with idiopathic myelofibrosis (13 of 23), and 23 percent among patients with essential thrombocythemia (21 of 93). V617F is a somatic mutation present in hematopoietic cells. Mitotic recombination probably causes both 9pLOH and the transition from heterozygosity to homozygosity for V617F. Genetic evidence and in vitro functional studies indicate that V617F gives hematopoietic precursors proliferative and survival advantages. Patients with the V617F mutation had a significantly longer duration of disease and a higher rate of complications (fibrosis, hemorrhage, and thrombosis) and treatment with cytoreductive therapy than patients with wild-type JAK2. A high proportion of patients with myeloproliferative disorders carry a dominant gain-of-function mutation of JAK2. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation.

              Bcl-6 and Blimp-1 have recently been identified as key transcriptional regulators of effector and memory differentiation in CD4(+) T cells and CD8(+) T cells. Bcl-6 and Blimp-1 were previously known to be critical regulators of effector and memory differentiation of B lymphocytes. The new findings unexpectedly point to the Bcl-6 and Blimp-1 regulatory axis as a ubiquitous mechanism for controlling effector and memory lymphocyte differentiation and function. Bcl-6 and Blimp-1 are antagonistic transcription factors and can function as a self-reinforcing genetic switch for cell-fate decisions. However, their influences in different lymphocytes are complex. Here we review and examine the commonalities and differences in the functions of these transcription factors in CD4(+) follicular helper T(FH) lymphocytes, effector CD8(+) T lymphocytes and B lymphocytes.
                Bookmark

                Author and article information

                Contributors
                sufang-liu@csu.edu.cn
                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group UK (London )
                2058-7716
                29 September 2021
                29 September 2021
                2021
                : 7
                : 268
                Affiliations
                [1 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Department of Hematology, The Second Xiangya Hospital, , Central South University, ; Changsha, Hunan 410011 China
                [2 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Institute of Molecular Hematology, , Central South University, ; Changsha, Hunan 410011 China
                [3 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Department of Oncology, The Second Xiangya Hospital, , Central South University, ; Changsha, Hunan 410011 China
                Author information
                http://orcid.org/0000-0003-1456-466X
                Article
                655
                10.1038/s41420-021-00655-1
                8481535
                34588425
                d935a6e0-b0e4-4cda-a2d5-58a16b9816cf
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 April 2021
                : 18 August 2021
                : 9 September 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100004735, Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation);
                Award ID: 2021JJ30919
                Award ID: 2019JJ40449
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81500171
                Award ID: 81700168
                Award ID: 81470323
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                cancer therapy,cell signalling
                cancer therapy, cell signalling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content425

                Cited by6

                Most referenced authors585