28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC.

      1 ,
      The Journal of biological chemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essential bacterial membrane protein YidC facilitates insertion and assembly of proteins destined for integration into the inner membrane. It has homologues in both mitochondria and chloroplasts. Here we report the crystal structure of the Escherichia coli YidC major periplasmic domain (YidCECP1) at 2.5A resolution. This domain is present in YidC from Gram-negative bacteria and is more than half the size of the full-length protein. The structure reveals that YidCECP1 is made up of a large twisted beta-sandwich protein fold with a C-terminal alpha-helix that packs against one face of the beta-sandwich. Our structure and sequence analysis reveals that the C-terminal alpha-helix and the beta-sheet that it lays against are the most conserved regions of the domain. The region corresponding to the C-terminal alpha-helix was previously shown to be important for the protein insertase function of YidC and is conserved in other YidC-like proteins. The structure reveals that a region of YidC that was previously shown to be involved in binding to SecF maps to one edge of the beta-sandwich. Electrostatic analysis of the molecular surface for this region of YidC reveals a predominantly charged surface and suggests that the SecF-YidC interaction may be electrostatic in nature. Interestingly, YidCECP1 has significant structural similarity to galactose mutarotase from Lactococcus lactis, suggesting that this domain may have another function besides its role in membrane protein assembly.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          Feb 22 2008
          : 283
          : 8
          Affiliations
          [1 ] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
          Article
          M708936200
          10.1074/jbc.M708936200
          18093969
          d9338f48-cfb2-43a8-b97c-8542ee538682
          History

          Comments

          Comment on this article