Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs). Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus ( G′) increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G′ as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%), stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a ‘supportive framework,’ as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on the amount of prestrain.
The actin cytoskeleton provides structural integrity to a cell, is highly dynamic, and plays a central role in a wide variety of phenomena such as migration and the sensation of external forces. For years, researchers have studied the mechanics of the cytoskeleton by creating actin gels in the laboratory in combination with proteins that bridge between and reinforce the actin gel found inside cells. These gels, however, failed to replicate many aspects of cell behavior. Recent studies have shown that tension within the cytoskeleton contributes to the observed stiffness of cells. Still, our understanding of cytoskeletal mechanics is incomplete, and many observed phenomena cannot be explained by existing models. Here, we simulate a three-dimensional network containing actin filaments linked together by other proteins. We studied the relative contributions of thermal fluctuations of the network and the stiffness of filaments and linking proteins. Under conditions that replicate those in a cell, properties of the linking proteins are surprisingly significant, as is the stiffness of the actin filament to stretching. Thermal fluctuations are relatively unimportant, but become more so at low levels of resting tension. At high tensions, a small fraction of filaments support a majority of the load.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.