2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review gives a comprehensive summary of various defluoridation adsorbents in terms of performance, water quality assessment and mechanisms.

          Abstract

          Excessive intake of fluoride can lead to a series of fluorosis-based diseases, and how to remove the excess fluoride from water is an urgent issue worldwide. Among various defluoridation methods, adsorption is a well-studied and widely used technology due to its simple design, convenient operation and low cost. In this review, we comprehensively summarized and evaluated different kinds of defluoridation adsorbents developed in the last decade, including adsorbents derived from natural minerals, industrial wastes and biomass, metal oxide and hydroxide adsorbents, and carbon-based adsorbents. The preparation methods of adsorbents and the strategies to enhance their defluoridation performance are highlighted. It is found that regulating and controlling the crystalline phases, microstructures and active sites and incorporating other materials to form composites are effective methods to enhance the defluoridation performances of adsorbents. The water quality after defluoridation and related influencing factors are discussed in detail. Moreover, the fluoride removal mechanisms of different adsorbents are outlined and analyzed. Based on the review, the advantages and disadvantages of different adsorbents, as well as the prospects and challenges are also discussed.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: not found
          • Article: not found

          Fluoride removal from water by adsorption—A review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review of fluoride removal from drinking water.

            Fluoride in drinking water has a profound effect on teeth and bones. Up to a small level (1-1.5mg/L) this strengthens the enamel. Concentrations in the range of 1.5-4 mg/L result in dental fluorosis whereas with prolonged exposure at still higher fluoride concentrations (4-10mg/L) dental fluorosis progresses to skeletal fluorosis. High fluoride concentrations in groundwater, up to more than 30 mg/L, occur widely, in many parts of the world. This review article is aimed at providing precise information on efforts made by various researchers in the field of fluoride removal for drinking water. The fluoride removal has been broadly divided in two sections dealing with membrane and adsorption techniques. Under the membrane techniques reverse osmosis, nanofiltration, dialysis and electro-dialysis have been discussed. Adsorption, which is a conventional technique, deals with adsorbents such as: alumina/aluminium based materials, clays and soils, calcium based minerals, synthetic compounds and carbon based materials. Studies on fluoride removal from aqueous solutions using various reversed zeolites, modified zeolites and ion exchange resins based on cross-linked polystyrene are reviewed. During the last few years, layered double oxides have been of interest as adsorbents for fluoride removal. Such recent developments have been briefly discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

              To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs.
                Bookmark

                Author and article information

                Contributors
                Journal
                ESWRAR
                Environmental Science: Water Research & Technology
                Environ. Sci.: Water Res. Technol.
                Royal Society of Chemistry (RSC)
                2053-1400
                2053-1419
                July 30 2021
                2021
                : 7
                : 8
                : 1362-1386
                Affiliations
                [1 ]College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
                [2 ]Energy Materials & Physics Group, Department of Physics, Shanghai University, Shanghai 200444, China
                Article
                10.1039/D1EW00232E
                d8fa9590-6345-4514-868f-b533edc0c15e
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article