Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Across the planet, outbreaks of bacterial illnesses pose major health risks and raise concerns. Photodynamic, photothermal, and metal ion release effects of transition metal-based nanocomposites (TMNs) were recently shown to be highly effective in reducing bacterial resistance and upsurges in outbreaks. Surface plasmonic resonance, photonics, crystal structures, and optical properties of TMNs have been used to regulate metal ion release, produce oxidative stress, and generate heat for bactericidal applications. The superior properties of TMNs provide a chance to investigate and improve their antimicrobial actions, perhaps leading to therapeutic interventions. In this review, we discuss three alternative antibacterial strategies based on TMNs of photodynamic therapy, photothermal therapy, and metal ion release and their mechanistic actions. The scientific community has made significant efforts to address the safety, effectiveness, toxicity, and biocompatibility of these metallic nanostructures; significant achievements and trends have been highlighted in this review. The combination of therapies together has borne significant results to counter antimicrobial resistance (4-log reduction). These three antimicrobial pathways are separated into subcategories based on recent successes, highlighting potential needs and challenges in medical, environmental, and allied industries.

          Graphical Abstract

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging photoluminescence in monolayer MoS2.

          Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-layer MoS2 transistors.

            Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              2D transition metal dichalcogenides

                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                30 December 2022
                2022
                : 17
                : 6821-6842
                Affiliations
                [1 ]International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University , Taipei, Taiwan
                [2 ]Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University , Taipei, Taiwan
                [3 ]School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University , Taipei, Taiwan
                [4 ]Dharma Husada Nursing Academy , Kediri, Indonesia
                [5 ]Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga , Surabaya, Indonesia
                [6 ]Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya , East Java, Indonesia
                [7 ]College of Information System , Universitas Nusantara PGRI, Kediri, Indonesia
                [8 ]Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University , Taipei, Taiwan
                [9 ]Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University , Taipei, Taiwan
                [10 ]Stanford Byers Center for Biodesign, Stanford University , Stanford, CA, USA
                Author notes
                Correspondence: Yu-Cheng Hsiao; Tsung-Rong Kuo, Tel +886-2-66382736 ext. 1359; +886-2-27361661 ext. 7706, Email ychsiao@tmu.edu.tw; trkuo@tmu.edu.tw
                Author information
                http://orcid.org/0000-0002-6358-8265
                http://orcid.org/0000-0003-4937-951X
                Article
                392081
                10.2147/IJN.S392081
                9809169
                36605560
                d8f5b8d3-806f-4f6e-a4cd-4ea36f007d77
                © 2022 Mutalik et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 03 October 2022
                : 22 December 2022
                Page count
                Figures: 12, Tables: 1, References: 197, Pages: 22
                Categories
                Review

                Molecular medicine
                transition metals,nanocomposites,photodynamic,photothermal,metal ion release,antibacterial mechanisms

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content91

                Cited by10

                Most referenced authors10,840