132
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure and function of complex brain networks Translated title: Estructura y función de redes cerebrales complejas Translated title: Structure et fonction des réseaux cérébraux complexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed.

          Translated abstract

          Un creciente número de estudios teóricos y empíricos enfocan la función del cerebro humano desde una perspectiva de red. El análisis de las redes cerebrales se ha hecho posible gracias al desarrollo de nuevos métodos de obtención de imágenes, así como de nuevas herramientas provenientes de la teoría de grafos y de los sistemas dinámicos. Este artículo revisa algunos de estos avances metodológicos y resume los hallazgos recientes sobre la arquitectura de las redes cerebrales estructurales y funcionales. Los estudios del conectoma estructural revelan que existen varios módules o comunidades de redes que están vinculadas entre sí por concentradores (“hubs”) que median los procesos de comunicación entre los módules. Análisis recientes han demostrado que los concentradores de la red forman un nodo densamente interconectado denominado “club de ricos”, localizado centralmente para atraer y dispersar las señales de tránsito. En paralelo, los registros de la actividad neural en reposo y evocada por tareas han revelado distintas redes en estado de reposo que contribuyen a las funciones en diversos dominios cognitivos. Ya que los métodos de red se aplican cada vez más en el contexto clínico, se discute lo prometedor que puedan resultar estos para dilucidar los sustratos neurales de los trastornos cerebrales y mentales.

          Translated abstract

          De plus en plus d'études théoriques et empiriques abordent la fonction du cerveau humain sous I'angle de réseaux. L'analyse de ces réseaux est rendue possible par le développement de nouvelles méthodes d'acquisition d'imagerie et de nouveaux outils issus de théories graphiques et de systèmes dynamiques. Cet article analyse certaines de ces avancées méthodologiques et résume les récentes découvertes sur l'architecture des réseaux cérébraux anatomiques et fonctionnels. Des études sur le connectome structurel montrent plusieurs modules ou communautés de réseaux liés par des points centraux ou centres d'activité (hubs) permettant des processus de communication entre les modules. De récentes analyses des réseaux ont montré que les centres de ces réseaux forment un collectif à forte densité de liaison appelé «club de riches», dispose centralement pour attirer et disperser la circulation du signal. Parallèlement, des enregistrements de I'activité neuronale déclenchée par le travail ou au repos ont révélé des réseaux d'état de repos distincts contribuant à des fonctions dans différents domaines cognitifs. Les modèles de réseaux sont de plus en plus appliqués dans un contexte clinique et nous analysons les perspectives qu'ils offrent pour élucider les substrats neuronaux des troubles mentaux et cérébraux.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Fast unfolding of communities in large networks

          Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Collective dynamics of 'small-world' networks.

            Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The organization of the human cerebral cortex estimated by intrinsic functional connectivity.

              Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues in Clinical Neuroscience
                Les Laboratoires Servier (France )
                1294-8322
                1958-5969
                September 2013
                September 2013
                : 15
                : 3
                : 247-262
                Affiliations
                Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
                Author notes
                Article
                10.31887/DCNS.2013.15.3/osporns
                3811098
                24174898
                d8e74674-5d0b-4da4-8961-8994e75c5944
                Copyright: © 2013 Institut la Conférence Hippocrate - Servier Research Group

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                State of the Art

                Neurosciences
                tractography,neuroimaging,connectome,graph theory,resting state,diffusion imaging,functional mri

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content297

                Cited by254

                Most referenced authors2,055