481
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The noncatalytic RabGAP protein TBC1D14 regulates the Rab11- and ULK1-positive recycling endosomes required for autophagosome formation upon starvation

          Abstract

          Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain–containing Rab guanosine triphosphatase–activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)–positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.

            Autophagy is a bulk degradation process in eukaryotic cells and has fundamental roles in cellular homeostasis.The origin and source of autophagosomal membranes are long-standing questions in the field. Using electron microscopy, we show that, in mammalian culture cells, the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IMs). Overexpression of an Atg4B mutant, which causes defects in autophagosome formation, induces the accumulation of ER-IM complexes. Electron tomography revealed that the ER-IM complex appears as a subdomain of the ER that formed a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role for Rab7 in maturation of late autophagic vacuoles.

              The small GTP binding protein Rab7 has a role in the late endocytic pathway and lysosome biogenesis. The role of mammalian Rab7 in autophagy is, however, unknown. We have addressed this by inhibiting Rab7 function with RNA interference and overexpression of dominant negative Rab7. We show here that Rab7 was needed for the formation of preferably perinuclear, large aggregates, where the autophagosome marker LC3 colocalised with Rab7 and late endosomal and lysosomal markers. By electron microscopy we showed that these large aggregates corresponded to autophagic vacuoles surrounding late endosomal or lysosomal vesicles. Our experiments with quantitative electron microscopy showed that Rab7 was not needed for the initial maturation of early autophagosomes to late autophagic vacuoles, but that it participated in the final maturation of late autophagic vacuoles. Finally, we showed that the recruitment of Rab7 to autophagic vacuoles was retarded in cells deficient in the lysosomal membrane proteins Lamp1 and Lamp2, which we have recently shown to accumulate late autophagic vacuoles during starvation. In conclusion, our results showed a role for Rab7 in the final maturation of late autophagic vacuoles.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 May 2012
                : 197
                : 5
                : 659-675
                Affiliations
                [1 ]Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
                [2 ]Department of Biochemistry, University of Oxford, OX1 3QU Oxford, England, UK
                [3 ]Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
                [4 ]Department of Cell Biology, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan
                Author notes
                Correspondence to Sharon A. Tooze: sharon.tooze@ 123456cancer.org.uk

                C.A. Lamb and M. Razi contributed equally to this paper.

                Article
                201111079
                10.1083/jcb.201111079
                3365497
                22613832
                d8e52bcf-22b7-446c-b021-988c9602f208
                © 2012 Longatti et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 15 November 2011
                : 25 April 2012
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article