4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predictive coding potentially provides an explanatory model for understanding the neurocognitive mechanisms of psychosis. It proposes that cognitive processes, such as perception and inference, are implemented by a hierarchical system, with the influence of each level being a function of the estimated precision of beliefs at that level. However, predictive coding models of psychosis are insufficiently constrained—any phenomenon can be explained in multiple ways by postulating different changes to precision at different levels of processing. One reason for the lack of constraint in these models is that the core processes are thought to be implemented by the function of specific cortical layers, and the technology to measure layer specific neural activity in humans has until recently been lacking. As a result, our ability to constrain the models with empirical data has been limited. In this review we provide a brief overview of predictive processing models of psychosis and then describe the potential for newly developed, layer specific neuroimaging techniques to test and thus constrain these models. We conclude by discussing the most promising avenues for this research as well as the technical and conceptual challenges which may limit its application.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          The free-energy principle: a unified brain theory?

          A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.

            We describe a model of visual processing in which feedback connections from a higher- to a lower-order visual cortical area carry predictions of lower-level neural activities, whereas the feedforward connections carry the residual errors between the predictions and the actual lower-level activities. When exposed to natural images, a hierarchical network of model neurons implementing such a model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the residual errors showed endstopping and other extra-classical receptive-field effects. These results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whatever next? Predictive brains, situated agents, and the future of cognitive science.

              Andy Clark (2013)
              Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.
                Bookmark

                Author and article information

                Contributors
                Journal
                Schizophr Res
                Schizophr Res
                Schizophrenia Research
                Elsevier Science Publisher B. V
                0920-9964
                1573-2509
                1 July 2022
                July 2022
                : 245
                : 68-76
                Affiliations
                [a ]Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
                [b ]Department of Psychiatry, University of Oxford, Oxford, United Kingdom
                [c ]Oxford Health NHS Trust, Oxford, United Kingdom
                Author notes
                [* ]Corresponding author at: Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom. j.haarsma@ 123456ucl.ac.uk
                Article
                S0920-9964(20)30496-5
                10.1016/j.schres.2020.10.009
                9241988
                33199171
                d8bd499f-4e6f-4ed1-9636-cb111e9abc74
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 July 2020
                : 3 October 2020
                : 28 October 2020
                Categories
                Article

                Neurology
                predictive coding,psychosis,laminar fmri
                Neurology
                predictive coding, psychosis, laminar fmri

                Comments

                Comment on this article