The Shannon capacity of a graph G is the maximum asymptotic rate at which messages can be sent with zero probability of error through a noisy channel with confusability graph G. This extensively studied graph parameter disregards the fact that on atomic scales, Nature behaves in line with quantum mechanics. Entanglement, arguably the most counterintuitive feature of the theory, turns out to be a useful resource for communication across noisy channels. Recently, Leung, Mancinska, Matthews, Ozols and Roy [Comm. Math. Phys. 311, 2012] presented two examples of graphs whose Shannon capacity is strictly less than the capacity attainable if the sender and receiver have entangled quantum systems. Here we give new, possibly infinite, families of graphs for which the entangled capacity exceeds the Shannon capacity.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.