79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The membrane attack complex (MAC) is a key player in the pathogenesis of age-related macular degeneration (AMD) and is a putative activator of the NLRP3 inflammasome. Amyloid beta (Aβ), a component of drusen deposits, has also been implicated in inflammasome activation by our work and those of others. However, the interactions of MAC and Aβ are still poorly understood, especially their roles in aging and retinal degenerative pathologies. Since inflammasome activation may represent a key cellular pathway underlying age-related chronic inflammation in the eye, the purpose of this study is to identify the effects associated with MAC and inflammasome activation in the retinal pigment epithelium (RPE)/choroid and to evaluate the therapeutic merits of MAC suppression.

          Methods

          Adult Long-Evans rats were divided into treatment and control groups. Treatment groups received oral aurin tricarboxylic acid complex (ATAC), a MAC inhibitor, in drinking-water, and control groups received drinking-water alone (No ATAC). Groups were sacrificed at 7.5 or 11.5 months, after approximately 40 days of ATAC treatment. To study age-related changes of Aβ and MAC in RPE/choroid, naive animals were sacrificed at 2.5, 7.5, and 11.5 months. Eye tissues underwent immunohistochemistry and western blot analysis for MAC, Aβ, NF-κB activation, as well as cleaved caspase-1 and IL-18. Vitreal samples were collected and assessed by multiplex assays for secreted levels of IL-18 and IL-1β. Statistical analyses were performed, and significance level was set at p ≤ 0.05.

          Results

          In vivo studies demonstrated an age-dependent increase in MAC, Aβ, and NF-κB activation in the RPE/choroid. Systemic ATAC resulted in a prominent reduction in MAC formation and a concomitant reduction in inflammasome activation measured by cleaved caspase-1 and secreted levels of IL-18 and IL-1β, but not in NF-κB activation. In vitro studies demonstrated Aβ-induced MAC formation on RPE cells.

          Conclusions

          Age-dependent increases in Aβ and MAC are present in the rodent outer retina. Our results suggest that suppressing MAC formation and subsequent inflammasome activation in the RPE/choroid may reduce chronic low-grade inflammation associated with IL-18 and IL-1β in the outer retina.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12974-015-0337-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited.

          During the past ten years, dramatic advances have been made in unraveling the biological bases of age-related macular degeneration (AMD), the most common cause of irreversible blindness in western populations. In that timeframe, two distinct lines of evidence emerged which implicated chronic local inflammation and activation of the complement cascade in AMD pathogenesis. First, a number of complement system proteins, complement activators, and complement regulatory proteins were identified as molecular constituents of drusen, the hallmark extracellular deposits associated with early AMD. Subsequently, genetic studies revealed highly significant statistical associations between AMD and variants of several complement pathway-associated genes including: Complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3). In this article, we revisit our original hypothesis that chronic local inflammatory and immune-mediated events at the level of Bruch's membrane play critical roles in drusen biogenesis and, by extension, in the pathobiology of AMD. Secondly, we report the results of a new screening for additional AMD-associated polymorphisms in a battery of 63 complement-related genes. Third, we identify and characterize the local complement system in the RPE-choroid complex - thus adding a new dimension of biological complexity to the role of the complement system in ocular aging and AMD. Finally, we evaluate the most salient, recent evidence that bears directly on the role of complement in AMD pathogenesis and progression. Collectively, these recent findings strongly re-affirm the importance of the complement system in AMD. They lay the groundwork for further studies that may lead to the identification of a transcriptional disease signature of AMD, and hasten the development of new therapeutic approaches that will restore the complement-modulating activity that appears to be compromised in genetically susceptible individuals. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation.

            The membrane attack complex of complement (MAC), apart from its classical role of lysing cells, can also trigger a range of non-lethal effects on cells, acting as a drive to inflammation. In the present study, we chose to investigate these non-lethal effects on inflammasome activation. We found that, following sublytic MAC attack, there is increased cytosolic Ca(2+) concentration, at least partly through Ca(2+) release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This increase in intracellular Ca(2+) concentration leads to Ca(2+) accumulation in the mitochondrial matrix via the 'mitochondrial calcium uniporter' (MCU), and loss of mitochondrial transmembrane potential, triggering NLRP3 inflammasome activation and IL-1β release. NLRP3 co-localises with the mitochondria, probably sensing the increase in calcium and the resultant mitochondrial dysfunction, leading to caspase activation and apoptosis. This is the first study that links non-lethal effects of sublytic MAC attack with inflammasome activation and provides a mechanism by which sublytic MAC can drive inflammation and apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the retinal pigment epithelium: topographical variation and ageing changes.

              The retinal pigment epithelium (RPE) is a single layer of post-mitotic cells, which functions both as a selective barrier to and a vegetative regulator of the overlying photoreceptor layer, thereby playing a key role in its maintenance. Through the expression and activity of specific proteins, it regulates the transport of nutrients and waste products to and from the retina, it contributes to outer segment renewal by ingesting and degrading the spent tips of photoreceptor outer segments, it protects the outer retina from excessive high-energy light and light-generated oxygen reactive species and maintains retinal homeostasis through the release of diffusible factors. The ageing characteristics of the RPE suggest that in addition to cell loss, pleomorphic changes and loss of intact melanin granules, significant metabolic changes occur resulting, at least in part, from the intracellular accumulation of lipofuscin. This pigment has been shown to be highly phototoxic and has been linked to several oxidative changes, some leading to cell death. While the aetiology of age-related macular degeneration is complex and is as yet unresolved, it is likely that accelerated ageing-like changes in the RPE play a fundamental role in the development of this condition.
                Bookmark

                Author and article information

                Contributors
                sixi@ualberta.ca
                wade.jygao@alumni.ubc.ca
                jeniferv@pacificu.edu
                ect@mail.ubc.ca
                wangaikun@hotmail.com
                sijia.cao@alumni.ubc.ca
                jcui@mail.ubc.ca
                jjguo@mail.ubc.ca
                moonhee.lee@ubc.ca
                mcgeerpl@mail.ubc.ca
                604-875-4383 , jms@mail.ubc.ca
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                24 June 2015
                24 June 2015
                2015
                : 12
                : 121
                Affiliations
                [ ]Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, 2550 Willow Street, Vancouver, V5Z 3N9 BC Canada
                [ ]Kinsmen Lab of Neurological Research, University of British Columbia, Vancouver, BC Canada
                Article
                337
                10.1186/s12974-015-0337-1
                4486438
                26104676
                d81143ea-df17-4756-9971-91e3446e68d3
                © Zhao et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 February 2015
                : 4 June 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Neurosciences
                age-related macular degeneration,membrane attack complex,amyloid beta,nlrp3 inflammasome,nf-κb,rpe/choroid

                Comments

                Comment on this article