4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative stress and male reproductive biology

      ,
      Reproduction, Fertility and Development
      CSIRO Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spermatozoa were the first cell type in which the cellular generation of reactive oxygen was demonstrated. This activity has now been confirmed in spermatozoa from all mammalian species examined including the rat, mouse, rabbit, horse, bull and human being. Under physiological circumstances, cellular redox activity is thought to drive the cAMP-mediated, tyrosine phosphorylation events associated with sperm capacitation. In addition to this biological role, human spermatozoa also appear to suffer from oxidative stress, with impacts on the normality of their function and the integrity of their nuclear and mitochondrial DNA. Recent studies have helped to clarify the molecular basis for the intense redox activity observed in defective human spermatozoa, the nature of the subcellular structures responsible for this activity and possible mechanisms by which oxidative stress impacts on these cells. Given the importance of oxidative damage in the male germ line to the origins of male infertility, early pregnancy loss and childhood disease, this area of sperm biochemistry deserves attention from all those interested in improved methods for the diagnosis, management and prevention of male-mediated reproductive failure.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes.

          Superoxide and its derivatives are increasingly implicated in the regulation of physiological functions from oxygen sensing and blood pressure regulation to lymphocyte activation and sperm-oocyte fusion. Here we describe a novel superoxide-generating NADPH oxidase referred to as NADPH oxidase 5 (NOX5). NOX5 is distantly related to the gp91(phox) subunit of the phagocyte NADPH oxidase with conserved regions crucial for the electron transport (NADPH, FAD and heme binding sites). However, NOX5 has a unique N-terminal extension that contains three EF hand motifs. The mRNA of NOX5 is expressed in pachytene spermatocytes of testis and in B- and T-lymphocyte-rich areas of spleen and lymph nodes. When heterologously expressed, NOX5 was quiescent in unstimulated cells. However, in response to elevations of the cytosolic Ca(2+) concentration it generated large amounts of superoxide. Upon Ca(2+) activation, NOX5 also displayed a second function: it became a proton channel, presumably to compensate charge and pH alterations due to electron export. In summary, we have identified a novel NADPH oxidase that generates superoxide and functions as a H(+) channel in a Ca(2+)-dependent manner. NOX5 is likely to be involved in Ca(2+)-activated, redox-dependent processes of spermatozoa and lymphocytes such as sperm-oocyte fusion, cell proliferation, and cytokine secretion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa.

            Reactive oxygen metabolites are known to disrupt sperm-oocyte fusion, sperm movement, and DNA integrity; however, the relative sensitivities of these elements to oxidative stress are unknown. In this study these factors were assessed in human spermatozoa exposed to increasing levels of oxidative stress achieved through the stimulation of endogenous oxidant generation with NADPH or direct exposure to hydrogen peroxide. At low levels of oxidative stress, DNA fragmentation was significantly reduced while the rates of sperm-oocyte fusion were significantly enhanced. As the level of oxidative stress increased, the spermatozoa exhibited significantly elevated levels of DNA damage (p < 0.001) and yet continued to express an enhanced capacity for sperm-oocyte fusion. At the highest levels of oxidative stress, extremely high rates of DNA fragmentation were observed but the spermatozoa exhibited a parallel loss in their capacities for movement and oocyte fusion. These studies emphasize how redox mechanisms can either enhance or disrupt the functional and genomic integrity of human spermatozoa depending on the intensity of the oxidative stimulus. Because these qualities are affected at different rates, spermatozoa exhibiting significant DNA damage are still capable of fertilizing the oocyte. These results may have long-term implications for the safety of assisted conception procedures in cases associated with oxidative stress.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Population study of causes, treatment, and outcome of infertility.

                Bookmark

                Author and article information

                Journal
                Reproduction, Fertility and Development
                Reprod. Fertil. Dev.
                CSIRO Publishing
                1031-3613
                2004
                2004
                : 16
                : 5
                : 581
                Article
                10.1071/RD03089
                15367373
                d7f1854d-6b2e-4ef5-a6ea-a1c71ac42e74
                © 2004
                History

                Comments

                Comment on this article