Understanding collective behavior in both biological and social contexts, such as human interactions on dance floors, is a growing field of interest. Spatiotemporal dynamics of collective behavior have previously been modeled, for instance, with swarmalators, which are dynamical units that exhibit both swarming behavior and synchronization, combining spatial movement and entrainment. In our current study, we have expanded the swarmalator concept to encompass gaze direction as a representation of visual attention. We employ the newly developed directional swarmalator model for simulating the complex spatiotemporal dynamics observed on dance floors. Our model aims to reflect the complex dynamics of collective movement, as well as rhythmic synchronization and gaze alignment. It establishes a quantitative framework to dissect how individuals on dance floors self-organize and generate emergent patterns in response to both musical stimuli and visual perception of other dancers. The inclusion of gaze direction allows for the simulation of realistic scenarios on dance floors, mirroring the dynamic interplay of human movement in rhythm-driven environments. The model is initially tested against motion capture recordings of two groups dancing in a silent disco, however, it is theoretically adaptable to a variety of scenarios, including varying group sizes, adjustable degrees of auditory and visual coupling, as well as modifiable interaction ranges, making it a generic tool for exploring collective behavior in musical settings. The development of the directional swarmalator model contributes to understanding social dynamics in shared music and dance experiences.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.