15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bose–Einstein condensation in a plasmonic lattice

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological Insulators

          , (2011)
          Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-molecule strong coupling at room temperature in plasmonic nanocavities

            Emitters placed in an optical cavity experience an environment that changes their coupling to light. In the weak-coupling regime light extraction is enhanced, but more profound effects emerge in the single-molecule strong-coupling regime where mixed light-matter states form1,2. Individual two-level emitters in such cavities become non-linear for single photons, forming key building blocks for quantum information systems as well as ultra-low power switches and lasers3–6. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complex fabrication, severely compromising their use5,7,8. Here, by scaling the cavity volume below 40 nm3 and using host-guest chemistry to align 1-10 protectively-isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from >50 plasmonic nanocavities display characteristic anticrossings, with Rabi frequencies of 300 meV for 10 molecules decreasing to 90 meV for single molecules, matching quantitative models. Statistical analysis of vibrational spectroscopy time-series and dark-field scattering spectra provide evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis9 and pathways towards manipulation of chemical bonds10.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antennas for light

                Bookmark

                Author and article information

                Journal
                Nature Physics
                Nature Phys
                Springer Nature
                1745-2473
                1745-2481
                April 16 2018
                Article
                10.1038/s41567-018-0109-9
                d7bef2cb-6bf1-4d69-80d6-5c574f09c368
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article