3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis the molecular similarity of least common amino acid sites in ACE2 receptor to predict the potential susceptible species for SARS-CoV-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus’s dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species’ ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

            Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

              A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
                Bookmark

                Author and article information

                Contributors
                Role: Writing – original draftRole: Writing – review & editing
                Role: Writing – review & editing
                Role: Methodology
                Role: Software
                Role: Investigation
                Role: Project administration
                Role: Data curation
                Role: Conceptualization
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 May 2024
                2024
                : 19
                : 5
                : e0293441
                Affiliations
                [1 ] Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
                [2 ] College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
                [3 ] Ethiopian Wildlife Conservation Authority, Addis Ababa, Ethiopian
                [4 ] China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
                [5 ] School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, China
                Jordan University of Science and Technology, JORDAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                PONE-D-23-33028
                10.1371/journal.pone.0293441
                11065212
                38696505
                d7beb12a-00ad-4599-8b1f-010e8d294128
                © 2024 Hu et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 October 2023
                : 24 January 2024
                Page count
                Figures: 3, Tables: 6, Pages: 17
                Funding
                Funded by: Heilongjiang Touyan Innovation Team Program for Forest Ecology and Conservation
                Award ID: 000-41506205
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100011361, Key Laboratory of Coal-based CO2 Capture and Geological Storage, Jiangsu Province;
                Award ID: 2572020DY01
                Award Recipient :
                This study was supported by the Heilongjiang Touyan Innovation Team Program for Forest Ecology and Conservation [000-41506205] and the Iterative traceability study of susceptible host spectrum based on SARS-COV-2 cross-species propagation hypothesis [2572020DY01] in the form of grants to XW.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Epidemiology
                Medical Risk Factors
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Primates
                Apes
                Gorillas
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Mammals
                Primates
                Apes
                Gorillas
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Amino Acid Sequence Analysis
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Pulmonology
                Respiratory Disorders
                Respiratory Infections
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Protein Sequencing
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Protein Sequencing
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Cats
                Lynx
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Mammals
                Cats
                Lynx
                Custom metadata
                All relevant data are within the paper.
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article