Hearing loss is the most common form of sensory impairment in humans, with an anticipated rise in incidence as the result of recreational noise exposures. Hearing loss is also the second most common health issue afflicting military veterans. Currently, there are no approved therapeutics to treat sensorineural hearing loss in humans. While hearing loss affects both men and women, sexual dimorphism is documented with respect to peripheral and central auditory physiology, as well as susceptibility to age-related and noise-induced hearing loss. Physiological differences between the sexes are often hormone-driven, and an increasing body of literature demonstrates that the hormone estrogen and its related signaling pathways may in part, modulate the aforementioned differences in hearing. From a mechanistic perspective, understanding the underpinnings of the hormonal modulation of hearing may lead to the development of therapeutics for age related and noise induced hearing loss. Here the authors review a number of studies that range from human populations to animal models, which have begun to provide a framework for understanding the functional role of estrogen signaling in hearing, particularly in normal and aberrant peripheral auditory physiology.