16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fruit Phenology of Two Hazelnut Cultivars and Incidence of Damage by Halyomorpha halys in Treated and Untreated Hazel Groves

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past decade, Halyomorpha halys has become one of the main threats to hazelnut production. Its trophic activity makes kernels inedible due to strongly detrimental effects on the organoleptic quality. Its management in Italy is still tricky due to the lack of effective native biocontrol agents and authorized and effective insecticides. A field test was performed on San Giovanni (SG) and Tonda Romana (TR) cultivars (early and late ripening, respectively) to assess the intensity of cimiciato damage with different pest management approaches (no insecticide and integrated pest management, IPM). Moreover, phenological analysis of fruits and the monitoring of stink bug species by traps and plant beating were carried out. In the untreated plots, the SG cv showed a higher cimiciato incidence with respect to the late TR cv (40% SG–NI vs. 23% TR–NI). This was probably due to the different phenological phases in which stink bugs injured the fruits. In fact, stink bug bites provoke different kinds of injuries (blanks, shriveled, and cimiciato) according to the fruit’s development period. Indeed, in the period of highest insect occurrence in the field, the fruits of the early cv (SG) were in kernel expansion, a phenological phase in which bug injuries are more likely in cimiciato defects. Lastly, the IPM did not provide sufficient fruit protection (19% SG–IPM vs. 11% TR–IPM). The interaction between the phenological development of hazelnuts and the brown marmorated stink bug represents a critical aspect in understanding and implementing effective strategies for controlling this key pest on hazelnut trees.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Book: not found

          Climate Change 2007

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            No saturation in the accumulation of alien species worldwide

            Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Niches, models, and climate change: assessing the assumptions and uncertainties.

              As the rate and magnitude of climate change accelerate, understanding the consequences becomes increasingly important. Species distribution models (SDMs) based on current ecological niche constraints are used to project future species distributions. These models contain assumptions that add to the uncertainty in model projections stemming from the structure of the models, the algorithms used to translate niche associations into distributional probabilities, the quality and quantity of data, and mismatches between the scales of modeling and data. We illustrate the application of SDMs using two climate models and two distributional algorithms, together with information on distributional shifts in vegetation types, to project fine-scale future distributions of 60 California landbird species. Most species are projected to decrease in distribution by 2070. Changes in total species richness vary over the state, with large losses of species in some "hotspots" of vulnerability. Differences in distributional shifts among species will change species co-occurrences, creating spatial variation in similarities between current and future assemblages. We use these analyses to consider how assumptions can be addressed and uncertainties reduced. SDMs can provide a useful way to incorporate future conditions into conservation and management practices and decisions, but the uncertainties of model projections must be balanced with the risks of taking the wrong actions or the costs of inaction. Doing this will require that the sources and magnitudes of uncertainty are documented, and that conservationists and resource managers be willing to act despite the uncertainties. The alternative, of ignoring the future, is not an option.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                June 2023
                June 20 2023
                : 9
                : 6
                : 727
                Article
                10.3390/horticulturae9060727
                d797b1e2-3857-487e-ab52-75706884d424
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article