0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges and opportunities for increasing the use of low-risk plant protection products in sustainable production. A review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant production systems worldwide are struggling to meet the diverse and increasing needs of humankind while also facing challenges such as climate change and biodiversity loss. This, combined with the desirable transition from the use of conventional pesticides to more sustainable plant protection solutions, has led to an urgent, and increasing, need for low-risk plant protection products (PPPs) to be developed, applied, and integrated into management practices across all types of plant production systems. Despite a high demand from end users and consumers together with joint political goals at the EU level to replace conventional pesticides, the number of low-risk PPPs on the European market remains low, in comparison to synthetic agrochemicals. In this review, we summarize knowledge about the policy, technical, and administrative issues hampering the process of bringing new low-risk PPPs to the European market. We present an overview of the challenges in using the low-risk PPPs that are currently available within the EU agricultural, horticultural, and forestry sectors. We describe the variation in modes of action and the limitations associated with different application techniques and give concrete examples of problems and solutions from Swedish plant production sectors, in contrast to global perspectives as demonstrated by examples from African agriculture. Finally, we conclude that trans-sectoral, multi-actor approaches are required and provide suggestions on how to address the remaining knowledge gaps related to efficiency, application, and economics of low-risk PPP use in Integrated Pest Management (IPM) solutions for plant protection to improve future food security in Europe.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

            Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Research priorities for harnessing plant microbiomes in sustainable agriculture

              Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Agronomy for Sustainable Development
                Agron. Sustain. Dev.
                Springer Science and Business Media LLC
                1774-0746
                1773-0155
                April 2024
                April 04 2024
                April 2024
                : 44
                : 2
                Article
                10.1007/s13593-024-00957-5
                d7648d93-9a6c-42ad-a939-b393ad1894fd
                © 2024

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article