10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing

      , , , , ,
      Biomolecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          Update on management of diabetic foot ulcers.

          Diabetic foot ulcers (DFUs) are a serious complication of diabetes that results in significant morbidity and mortality. Mortality rates associated with the development of a DFU are estimated to be 5% in the first 12 months, and 5-year morality rates have been estimated at 42%. The standard practices in DFU management include surgical debridement, dressings to facilitate a moist wound environment and exudate control, wound off-loading, vascular assessment, and infection and glycemic control. These practices are best coordinated by a multidisciplinary diabetic foot wound clinic. Even with this comprehensive approach, there is still room for improvement in DFU outcomes. Several adjuvant therapies have been studied to reduce DFU healing times and amputation rates. We reviewed the rationale and guidelines for current standard of care practices and reviewed the evidence for the efficacy of adjuvant agents. The adjuvant therapies reviewed include the following categories: nonsurgical debridement agents, dressings and topical agents, oxygen therapies, negative pressure wound therapy, acellular bioproducts, human growth factors, energy-based therapies, and systemic therapies. Many of these agents have been found to be beneficial in improving wound healing rates, although a large proportion of the data are small, randomized controlled trials with high risks of bias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review.

            Diabetic foot ulcers (DFUs) are a chronic, non-healing complication of diabetes that lead to high hospital costs and, in extreme cases, to amputation. Diabetic neuropathy, peripheral vascular disease, abnormal cellular and cytokine/chemokine activity are among the main factors that hinder diabetic wound repair. DFUs represent a current and important challenge in the development of novel and efficient wound dressings. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, remove wound exudate and promote tissue regeneration. However, no existing dressing fulfills all the requirements associated with DFU treatment and the choice of the correct dressing depends on the wound type and stage, injury extension, patient condition and the tissues involved. Currently, there are different types of commercially available wound dressings that can be used for DFU treatment which differ on their application modes, materials, shape and on the methods employed for production. Dressing materials can include natural, modified and synthetic polymers, as well as their mixtures or combinations, processed in the form of films, foams, hydrocolloids and hydrogels. Moreover, wound dressings may be employed as medicated systems, through the delivery of healing enhancers and therapeutic substances (drugs, growth factors, peptides, stem cells and/or other bioactive substances). This work reviews the state of the art and the most recent advances in the development of wound dressings for DFU treatment. Special emphasis is given to systems employing new polymeric biomaterials, and to the latest and innovative therapeutic strategies and delivery approaches. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Haemostatic materials for wound healing applications

                Bookmark

                Author and article information

                Contributors
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                December 2022
                November 22 2022
                : 12
                : 12
                : 1727
                Article
                10.3390/biom12121727
                d760dd73-5e07-489b-a3c2-8f9d4a387069
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article