7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A20 Orchestrates Inflammatory Response in the Oral Mucosa through Restraining NF-κB Activity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8659426e209">Deregulated immune response to a dysbiotic resident microflora within the oral cavity leads to chronic periodontal disease, local tissue destruction, and various systemic complications. To preserve tissue homeostasis, inflammatory signaling pathways involved in the progression of periodontitis must be tightly regulated. A20 (TNFAIP3), a ubiquitin-editing enzyme, has emerged as one of the key regulators of inflammation. Yet, the function of A20 in the oral mucosa and the biological pathways in which A20 mitigates periodontal inflammation remain elusive. Using a combination of in vivo and ex vivo disease models, we report in this study that A20 regulates inflammatory responses to a keystone oral bacterium, <i>Porphyromonas gingivalis</i>, and restrains periodontal inflammation through its effect on NF-κB signaling and cytokine production. Depletion of A20 using gene editing in human macrophage-like cells (THP-1) significantly increased cytokine secretion, whereas A20 overexpression using lentivirus infection dampened the cytokine production following bacterial challenge through modulating NF-κB activity. Similar to human cells, bone marrow–derived macrophages from A20-deficient mice infected with <i>P. gingivalis</i> displayed increased NF-κB activity and cytokine production compared with the cells isolated from A20-competent mice. Subsequent experiments using a murine ligature-induced periodontitis model showed that even a partial loss of A20 promotes an increased inflammatory phenotype and more severe bone loss, further verifying the critical function of A20 in the oral mucosa. Collectively, to our knowledge, these findings reveal the first systematic evidence of a physiological role for A20 in the maintenance of oral tissue homeostasis as a negative regulator of inflammation. </p>

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquitin signalling in the NF-kappaB pathway.

          The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity.

            Inappropriate inflammasome activation contributes to multiple human diseases, but the mechanisms by which inflammasomes are suppressed are poorly understood. The NF-κB inhibitor A20 is a ubiquitin-modifying enzyme that might be critical in preventing human inflammatory diseases. Here, we report that A20-deficient macrophages, unlike normal cells, exhibit spontaneous NLRP3 inflammasome activity to LPS alone. The kinase RIPK3, but not the adaptor MyD88, is required for this response. In normal cells, A20 constitutively associates with caspase-1 and pro-IL-1β, and NLRP3 activation further promotes A20 recruitment to the inflammasome. Pro-IL-1β also co-immunoprecipitates with RIPK1, RIPK3, caspase-1, and caspase-8 in a complex that is modified with K63-linked and unanchored polyubiquitin. In A20-deficient macrophages, this pro-IL-1β-associated ubiquitination is markedly increased in a RIPK3-dependent manner. Mass spectrometric and mutational analyses reveal that K133 of pro-IL-1β is a physiological ubiquitination site that supports processing. Our study reveals a mechanism by which A20 prevents inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20).

              Constitutive activation of the NF-κB pathway is associated with diffuse large B-cell lymphoma (DLBCL) pathogenesis, but whether microRNA dysfunction can contribute to these events remains unclear. Starting from an integrative screening strategy, we uncovered that the negative NF-κB regulator TNFAIP3 is a direct target of miR-125a and miR-125b, which are commonly gained and/or overexpressed in DLBCL. Ectopic expression of these microRNAs in multiple cell models enhanced K63-linked ubiquitination of proximal signaling complexes and elevated NF-κB activity, leading to aberrant expression of its transcriptional targets and the development of a proproliferative and antiapoptotic phenotype in malignant B cells. Concordantly, genetic inhibition of miR-125a/miR-125b blunted NF-κB signals, whereas rescue assays and genetic modulation of a TNFAIP3-null model defined the essential role of the TNFAIP3 targeting on miR-125a/miR-125b-mediated lymphomagenesis. Importantly, miR-125a/mir-125b effects on TNFAIP3 expression and NF-κB activity were confirmed in a well-characterized cohort of primary DLBCLs. Our data delineate a unique epigenetic model for aberrant activation of the NF-κB pathway in cancer and provide a coherent mechanism for the role of these miRNAs in immune cell activation and hematopoiesis. Further, as miR-125b is a direct NF-κB transcriptional target, our results suggest the presence of a positive self-regulatory loop whereby termination of TNFAIP3 function by miR-125 could strengthen and prolong NF-κB activity.
                Bookmark

                Author and article information

                Journal
                The Journal of Immunology
                J.I.
                The American Association of Immunologists
                0022-1767
                1550-6606
                March 18 2019
                April 01 2019
                April 01 2019
                February 13 2019
                : 202
                : 7
                : 2044-2056
                Article
                10.4049/jimmunol.1801286
                6420508
                30760622
                d7596f4a-56ec-4c07-a70c-346352f1e0a2
                © 2019
                History

                Comments

                Comment on this article