68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of “regulator of G-protein signaling” (RGS) proteins that accelerate the rate of GTP hydrolysis by Gα subunits (dubbed GTPase-accelerating protein or “GAP” activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Gα subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Gα effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Gα and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Gα subunits to 7TM receptors in the absence of conventional Gβγ dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Gα AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Gα subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric‑8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Gα subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies

            We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations between 7 and 15.5 microM. Elongation and rapid shortening were distinctly different phases. At each end, the elongation phase was characterized by a second order association and a substantial first order dissociation reaction. Association rate constants were 8.9 and 4.3 microM-1 s-1 for the plus and minus ends, respectively; and the corresponding dissociation rate constants were 44 and 23 s-1. For both ends, the rate of tubulin dissociation equaled the rate of tubulin association at 5 microM. The rate of rapid shortening was similar at the two ends (plus = 733 s-1; minus = 915 s-1), and did not vary with tubulin concentration. Transitions between phases were abrupt and stochastic. As the tubulin concentration was increased, catastrophe frequency decreased at both ends, and rescue frequency increased dramatically at the minus end. This resulted in fewer rapid shortening phases at higher tubulin concentrations for both ends and shorter rapid shortening phases at the minus end. At each concentration, the frequency of catastrophe was slightly greater at the plus end, and the frequency of rescue was greater at the minus end. Our data demonstrate that microtubules assembled from pure tubulin undergo dynamic instability over a twofold range of tubulin concentrations, and that the dynamic instability of the plus and minus ends of microtubules can be significantly different. Our analysis indicates that this difference could produce treadmilling, and establishes general limits on the effectiveness of length redistribution as a measure of dynamic instability. Our results are consistent with the existence of a GTP cap during elongation, but are not consistent with existing GTP cap models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.

              GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on G subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-¿, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with G¿ or with G¿5 through an endogenous G-like domain, and by interaction with multiple other proteins.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2005
                1 April 2005
                : 1
                : 2
                : 51-66
                Affiliations
                Department of Pharmacology, UNC Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, CB#7365, 1106 M.E. Jones Building, Chapel Hill, NC 27599-7365 USA
                Author notes
                Corresponding address: David P. Siderovski, dsiderov@ 123456med.unc.edu tel: 1-919-843-9363 fax: 1-919-966-5640

                Conflict of interest: The authors declare that no conflict of interest exists.

                Article
                ijbsv01p0051
                10.7150/ijbs.1.51
                1142213
                15951850
                d74805f4-3cd1-4f29-92c8-1be3fb664059
                © Ivyspring International Publisher. This is an open access article distributed under the terms of a Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/2.0) which permits distribution and reproduction for noncommerical purposes, provided that the article is in whole, unmodified, and properly cited.
                History
                : 23 July 2004
                : 1 February 2005
                Categories
                Review

                Life sciences
                asymmetric cell division,rgs proteins,goloco motif,ric-8,g-protein
                Life sciences
                asymmetric cell division, rgs proteins, goloco motif, ric-8, g-protein

                Comments

                Comment on this article