1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Injection System for the CHIME/FRB Experiment

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dedicated surveys searching for Fast Radio Bursts (FRBs) are subject to selection effects which bias the observed population of events. Software injection systems are one method of correcting for these biases by injecting a mock population of synthetic FRBs directly into the realtime search pipeline. The injected population may then be used to map intrinsic burst properties onto an expected signal-to-noise ratio (SNR), so long as telescope characteristics such as the beam model and calibration factors are properly accounted for. This paper presents an injection system developed for the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project (CHIME/FRB). The system was tested to ensure high detection efficiency, and the pulse calibration method was verified. Using an injection population of ~85,000 synthetic FRBs, we found that the correlation between fluence and SNR for injected FRBs was consistent with that of CHIME/FRB detections in the first CHIME/FRB catalog. We also noted that the sensitivity of the telescope varied strongly as a function of the broadened burst width, but not as a function of the dispersion measure. We conclude that some of the machine-learning based Radio Frequency Interference (RFI) mitigation methods used by CHIME/FRB can be re-trained using injection data to increase sensitivity to wide events, and that planned upgrades to the presented injection system will allow for determining a more accurate CHIME/FRB selection function in the near future.

          Related collections

          Author and article information

          Journal
          28 June 2022
          Article
          2206.14079
          d710d8a6-8a2b-4b38-8c2d-6e304a86c9c0

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          13 pages, 8 figures. Submitted to AJ
          astro-ph.IM

          Instrumentation & Methods for astrophysics
          Instrumentation & Methods for astrophysics

          Comments

          Comment on this article