73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      C. elegans Model Identifies Genetic Modifiers of α-Synuclein Inclusion Formation During Aging

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inclusions in the brain containing α-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of α-synuclein inclusions. In worms of old age, inclusions contain aggregated α- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in α-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between α-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other α-synuclein related disorders.

          Author Summary

          Parkinson's disease is the second most common brain disorder of the elderly. It is thought to be caused by environmental and genetic factors. However, little is known about the genes and processes involved. Pathologically, Parkinson's disease is recognized by inclusions in the brain that contain a disease-specific protein: alpha-synuclein. We created a small animal model ( C. elegans) in which we could follow the formation of alpha-synuclein inclusions in living and aging animals. With a genome-wide RNAi screen we identified 80 genes whose expression influences inclusion formation. These genes include evolutionarily conserved regulators of longevity, suggesting a link between inclusion formation and the molecular mechanism of aging. Our results offer a refined understanding of how Parkinson's disease arises during aging and we identify processes and genes that may underlie an increased susceptibility for the disease, which is important for improving diagnostics and developing strategies for therapeutic intervention.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models.

          Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sir2 mediates longevity in the fly through a pathway related to calorie restriction.

            Calorie restriction can extend life span in a variety of species including mammals, flies, nematodes, and yeast. Despite the importance of this nearly universal effect, little is understood about the molecular mechanisms that mediate the life-span-extending effect of calorie restriction in metazoans. Sir2 is known to be involved in life span determination and calorie restriction in yeast mother cells. In nematodes increased Sir2 can extend life span, but a direct link to calorie restriction has not been demonstrated. We now report that Sir2 is directly involved in the calorie-restriction life-span-extending pathway in Drosophila. We demonstrate that an increase in Drosophila Sir2 (dSir2) extends life span, whereas a decrease in dSir2 blocks the life-span-extending effect of calorie reduction or rpd3 mutations. These data lead us to propose a genetic pathway by which calorie restriction extends life span and provides a framework for genetic and pharmacological studies of life span extension in metazoans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans.

              Studies of the mutant gene in Huntington's disease, and for eight related neurodegenerative disorders, have identified polyglutamine (polyQ) expansions as a basis for cellular toxicity. This finding has led to a disease hypothesis that protein aggregation and cellular dysfunction can occur at a threshold of approximately 40 glutamine residues. Here, we test this hypothesis by expression of fluorescently tagged polyQ proteins (Q29, Q33, Q35, Q40, and Q44) in the body wall muscle cells of Caenorhabditis elegans and show that young adults exhibit a sharp boundary at 35-40 glutamines associated with the appearance of protein aggregates and loss of motility. Surprisingly, genetically identical animals expressing near-threshold polyQ repeats exhibited a high degree of variation in the appearance of protein aggregates and cellular toxicity that was dependent on repeat length and exacerbated during aging. The role of genetically determined aging pathways in the progression of age-dependent polyQ-mediated aggregation and cellular toxicity was tested by expressing Q82 in the background of age-1 mutant animals that exhibit an extended lifespan. We observed a dramatic delay of polyQ toxicity and appearance of protein aggregates. These data provide experimental support for the threshold hypothesis of polyQ-mediated toxicity in an experimental organism and emphasize the importance of the threshold as a point at which genetic modifiers and aging influence biochemical environment and protein homeostasis in the cell.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plge
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2008
                March 2008
                21 March 2008
                : 4
                : 3
                : e1000027
                Affiliations
                [1 ]Department of Genetics, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
                [2 ]Groningen Bioinformatics Centre, University of Groningen, Haren, The Netherlands
                [3 ]Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
                Stanford University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: TvH RP EN. Performed the experiments: TvH KT. Analyzed the data: TvH KT RB. Contributed reagents/materials/analysis tools: RB RH RP. Wrote the paper: TvH EN. Advice: RH.

                Article
                07-PLGE-RA-0871R2
                10.1371/journal.pgen.1000027
                2265412
                18369446
                d70bddc8-a21c-414c-9fb0-16f512f14609
                van Ham et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 October 2007
                : 8 February 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Gene Discovery

                Genetics
                Genetics

                Comments

                Comment on this article