7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preventive residual insecticide applications successfully controlled Aedes aegypti in Yucatan, Mexico

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insecticide-based approaches remain a key pillar for Aedes-borne virus (ABV, dengue, chikungunya, Zika) control, yet they are challenged by the limited effect of traditional outdoor insecticide campaigns responding to reported arboviral cases and by the emergence of insecticide resistance in mosquitoes. A three-arm Phase II unblinded entomological cluster randomized trial was conducted in Merida, Yucatan State, Mexico, to quantify the entomological impact of targeted indoor residual spraying (TIRS, application of residual insecticides in Ae. aegypti indoor resting sites) applied preventively 2 months before the beginning of the arbovirus transmission season. Trial arms involved the use of two insecticides with unrelated modes of action (Actellic 300CS, pirimiphos-methyl, and SumiShield 50WG, clothianidin) and a control arm where TIRS was not applied. Entomological impact was quantified by Prokopack adult collections performed indoors during 10 min per house. Regardless of the insecticide, conducting a preventive TIRS application led to significant reductions in indoor Ae. aegypti densities, which were maintained at the same levels as in the low arbovirus transmission period (Actellic 300CS reduced Ae. aegypti density up to 8 months, whereas SumiShield 50WG up to 6 months). The proportional reduction in Ae. aegypti abundance in treatment houses compared to control houses was 50–70% for Actellic 300CS and 43–63% for SumiShield 50WG. Total operational costs including insecticide ranged from US$4.2 to US$10.5 per house, depending on the insecticide cost. Conducting preventive residual insecticide applications can maintain Ae. aegypti densities at low levels year-round with important implications for preventing ABVs in the Americas and beyond.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans

          Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global expansion and redistribution of Aedes -borne virus transmission risk with climate change

            Forecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3–34.0°C for Ae. aegypti; 19.9–29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              House-to-house human movement drives dengue virus transmission.

              Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.
                Bookmark

                Author and article information

                Contributors
                gmvazqu@emory.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 December 2022
                20 December 2022
                2022
                : 12
                : 21998
                Affiliations
                [1 ]GRID grid.189967.8, ISNI 0000 0001 0941 6502, Department of Environmental Sciences, Mathematics and Science Center, , Emory University, ; 400 Dowman Drive Ste: E530, Atlanta, GA 30322 USA
                [2 ]GRID grid.412864.d, ISNI 0000 0001 2188 7788, Unidad Colaborativa Para Bioensayos Entomologicos, , Universidad Autonoma de Yucatan, ; Mérida, Mexico
                [3 ]GRID grid.415771.1, ISNI 0000 0004 1773 4764, National Institute of Public Health, INSP, ; Cuernavaca, Mexico
                [4 ]GRID grid.412864.d, ISNI 0000 0001 2188 7788, Centro de Investigaciones Regionales, , Autonomous University of Yucatan, ; Mérida, Mexico
                Article
                26577
                10.1038/s41598-022-26577-1
                9768150
                36539478
                d6c5c93c-e81a-4060-a63f-7f4f353e39dc
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 September 2022
                : 16 December 2022
                Funding
                Funded by: Innovative Vector Control Consortium
                Award ID: 48835
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100017195, Emory Global Health Institute;
                Award ID: 00052002
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: U01AI148069
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                viral infection,preclinical research
                Uncategorized
                viral infection, preclinical research

                Comments

                Comment on this article