5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy Induced by Muscarinic Acetylcholine Receptor 1 Mediates Migration and Invasion Targeting Atg5 via AMPK/mTOR Pathway in Prostate Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing numbers of researchers discovered the expression of muscarinic acetylcholine receptor 1 in human cancers, while its function in human prostate cancer is still unclear. Our present study focused on CHRM1 to clarify its role in mediating autophagy in prostate cancer. We used immunohistochemistry, western blotting, and immunofluorescence experiments to observe the expression of muscarinic acetylcholine receptor 1 both in nude mice with subcutaneous tumors and in prostate cancer cells. The autophagy was observed through transmission electron microscopy, western blotting, quantitative real-time PCR, and immunofluorescence. After that, we used lentivirus to establish CHRM1 and Atg5 knockdown models. Then, the migration and invasion abilities after knocking down muscarinic acetylcholine receptor 1 and Atg5 were detected by transwell assays. In addition, the AMPK/mTOR pathway-related targets were detected by western blotting. We found that muscarinic acetylcholine receptor 1 was abundantly expressed both in vitro and in vivo in prostate cancer. The overexpression of muscarinic acetylcholine receptor 1 positively regulated migration and invasion in tumor cells as well as the activation of autophagy. Muscarinic acetylcholine receptor 1 was highly correlated with Atg5 and activated the AMPK/mTOR signaling pathway. Downregulation of Atg5 inhibited cell autophagy in prostate cancer cells and the migration and invasion of prostate cancer cells. Meanwhile, abnormal expressions of AMPK/mTOR pathway-related proteins were found. In conclusion, the present findings indicated that muscarinic acetylcholine receptor 1 is highly expressed in prostate cancer cells and promotes cell invasion and migration of prostate cancer. Autophagy is activated in prostate cancer cells and the activation of muscarinic acetylcholine receptor 1 positively regulates autophagy in prostate cancer cells. Moreover, muscarinic acetylcholine receptor 1 induces autophagy-mediated cell migration and invasion by targeting Atg5 in prostate cancer cells via AMPK/mTOR pathway, which uncovered that regulating muscarinic acetylcholine receptor 1, identified in this study, can be a promising solution for treating prostate cancer.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2018

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The canonical Notch signaling pathway: unfolding the activation mechanism.

            Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy: cellular and molecular mechanisms.

              Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Oncol
                J Oncol
                jo
                Journal of Oncology
                Hindawi
                1687-8450
                1687-8469
                2022
                9 June 2022
                : 2022
                : 6523195
                Affiliations
                Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
                Author notes

                Academic Editor: Subhadeep Roy

                Author information
                https://orcid.org/0000-0003-3368-8342
                Article
                10.1155/2022/6523195
                9203210
                35720225
                d66956e4-8802-41a3-9214-be5ee0c175fe
                Copyright © 2022 Qianhui Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 April 2021
                : 12 August 2021
                : 19 May 2022
                Funding
                Funded by: Natural Science Foundation of Chongqing
                Award ID: CSTC2009BA5081
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article