5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      G-Net: Implementing an enhanced brain tumor segmentation framework using semantic segmentation design

      research-article
      ,
      PLOS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental computer vision task called semantic segmentation has significant uses in the understanding of medical pictures, including the segmentation of tumors in the brain. The G-Shaped Net architecture appears in this context as an innovative and promising design that combines components from many models to attain improved accuracy and efficiency. In order to improve efficiency, the G-Shaped Net architecture synergistically incorporates four fundamental components: the Self-Attention, Squeeze Excitation, Fusion, and Spatial Pyramid Pooling block structures. These factors work together to improve the precision and effectiveness of brain tumor segmentation. Self-Attention, a crucial component of G-Shaped architecture, gives the model the ability to concentrate on the image’s most informative areas, enabling accurate localization of tumor boundaries. By adjusting channel-wise feature maps, Squeeze Excitation completes this by improving the model’s capacity to capture fine-grained information in the medical pictures. Since the G-Shaped model’s Spatial Pyramid Pooling component provides multi-scale contextual information, the model is capable of handling tumors of various sizes and complexity levels. Additionally, the Fusion block architectures combine characteristics from many sources, enabling a thorough comprehension of the image and improving the segmentation outcomes. The G-Shaped Net architecture is an asset for medical imaging and diagnostics and represents a substantial development in semantic segmentation, which is needed more and more for accurate brain tumor segmentation.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

          In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated brain tumour Segmentation using multimodal brain scans, a survey based on models submitted to the BraTS 2012-18 challenges

            Reliable brain tumor segmentation is essential for accurate diagnosis and treatment planning. Since manual segmentation of brain tumors is a highly time-consuming, expensive and subjective task, practical automated methods for this purpose are greatly appreciated. But since brain tumors are highly heterogeneous in terms of location, shape, and size, developing automatic segmentation methods has remained a challenging task over decades. This paper aims to review the evolution of automated models for brain tumor segmentation using multimodal MR images. In order to be able to make a just comparison between different methods, the proposed models are studied for the most famous benchmark for brain tumor segmentation, namely the BraTS challenge [1]. The BraTS 2012-2018 challenges and the state-of-the-art automated models employed each year are analysed. The changing trend of these automated methods since 2012 are studied and the main parameters that affect the performance of different models are analysed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Deep Multi-Task Learning Framework for Brain Tumor Segmentation

              Glioma is the most common primary central nervous system tumor, accounting for about half of all intracranial primary tumors. As a non-invasive examination method, MRI has an extremely important guiding role in the clinical intervention of tumors. However, manually segmenting brain tumors from MRI requires a lot of time and energy for doctors, which affects the implementation of follow-up diagnosis and treatment plans. With the development of deep learning, medical image segmentation is gradually automated. However, brain tumors are easily confused with strokes and serious imbalances between classes make brain tumor segmentation one of the most difficult tasks in MRI segmentation. In order to solve these problems, we propose a deep multi-task learning framework and integrate a multi-depth fusion module in the framework to accurately segment brain tumors. In this framework, we have added a distance transform decoder based on the V-Net, which can make the segmentation contour generated by the mask decoder more accurate and reduce the generation of rough boundaries. In order to combine the different tasks of the two decoders, we weighted and added their corresponding loss functions, where the distance map prediction regularized the mask prediction. At the same time, the multi-depth fusion module in the encoder can enhance the ability of the network to extract features. The accuracy of the model will be evaluated online using the multispectral MRI records of the BraTS 2018, BraTS 2019, and BraTS 2020 datasets. This method obtains high-quality segmentation results, and the average Dice is as high as 78%. The experimental results show that this model has great potential in segmenting brain tumors automatically and accurately.
                Bookmark

                Author and article information

                Contributors
                Role: MethodologyRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2024
                6 August 2024
                : 19
                : 8
                : e0308236
                Affiliations
                [001] School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
                Shijiazhuang Tiedao University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-5713-8938
                Article
                PONE-D-24-05516
                10.1371/journal.pone.0308236
                11302928
                39106259
                d66923f5-4c29-48c7-ac17-3a671ed90c9b
                © 2024 D. S., Clement J

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 February 2024
                : 18 July 2024
                Page count
                Figures: 11, Tables: 8, Pages: 21
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Medicine and Health Sciences
                Diagnostic Medicine
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Research and Analysis Methods
                Imaging Techniques
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Medicine and Health Sciences
                Radiology and Imaging
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Malignant Tumors
                Medicine and Health Sciences
                Oncology
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Mathematical Functions
                Convolution
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Attention
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Attention
                Social Sciences
                Psychology
                Cognitive Psychology
                Attention
                Medicine and Health Sciences
                Diagnostic Medicine
                Physical Sciences
                Mathematics
                Operator Theory
                Kernel Functions
                Custom metadata
                The data underlying the results presented in the study are available from https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article