67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Breast milk is an important source of staphylococci and other bacterial groups to the infant gut. The objective of this work was to analyse the bacterial diversity in feces of breast-fed infants and to compare it with that of formula-fed ones. A total of 23 women and their respective infants (16 breast-fed and 7 formula-fed) participated in the study. The 16 women and their infants provided a sample of breast milk and feces, respectively, at days 7, 14, and 35. The samples were plated onto different culture media. Staphylococcal and enterococcal isolates were submitted to genetic profiling and to a characterization scheme, including detection of potential virulence traits and sensitivity to antibiotics.

          Results

          The feeding practice had a significant effect on bacterial counts. A total of 1,210 isolates (489 from milk, 531 from breast-fed and 190 from formula-fed infants) were identified. Staphylococcus epidermidis was the predominant species in milk and feces of breast-fed infants while it was less prevalent in those of formula fed-infants. Enterococcus faecalis was the second predominant bacterial species among the fecal samples provided by the breast-fed infants but it was also present in all the samples from the formula-fed ones. The biofilm-related icaD gene and the mecA gene were only detected in a low number of the S. epidermidis strains. Several enterococcal isolates were also characterized and none of them contained the cylA or the vanABDEG antibiotic-resistance genes. All were sensitive to vancomycin.

          Conclusion

          The presence of S. epidermidis is a differential trait of the fecal microbiota of breast-fed infants. Globally, the staphyloccal isolates obtained from milk and feces of breast-fed infants contain a low number of virulence determinants and are sensitive to most of the antibiotics tested.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Human milk is a source of lactic acid bacteria for the infant gut.

          To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates.

            Enterococci are used as starter and probiotic cultures in foods, and they occur as natural food contaminants. The genus Enterococcus is of increased significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance. In this study, we investigated the incidence of known virulence determinants in starter, food, and medical strains of Enterococcus faecalis, E. faecium, and E. durans. PCR and gene probe strategies were used to screen enterococcal isolates from both food and medical sources. Different and distinct patterns of incidence of virulence determinants were found for the E. faecalis and E. faecium strains. Medical E. faecalis strains had more virulence determinants than did food strains, which, in turn, had more than did starter strains. All of the E. faecalis strains tested possessed multiple determinants (between 6 and 11). E. faecium strains were generally free of virulence determinants, with notable exceptions. Significantly, esp and gelE determinants were identified in E. faecium medical strains. These virulence determinants have not previously been identified in E. faecium strains and may result from regional differences or the evolution of pathogenic E. faecium. Phenotypic testing revealed the existence of apparently silent gelE and cyl genes. In E. faecalis, the trend in these silent genes mirrors that of the expressed determinants. The potential for starter strains to acquire virulence determinants by natural conjugation mechanisms was investigated. Transconjugation in which starter strains acquired additional virulence determinants from medical strains was demonstrated. In addition, multiple pheromone-encoding genes were identified in both food and starter strains, indicating their potential to acquire other sex pheromone plasmids. These results suggest that the use of Enterococcus spp. in foods requires careful safety evaluation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods.

              An obvious difference between breast-fed and formula-fed newborn infants is the development of the intestinal flora, considered to be of importance for protection against harmful micro-organisms and for the maturation of the intestinal immune system. In this study, novel molecular identification methods were used to verify the data obtained by traditional culture methods and to validate the culture independent fluorescent in situ hybridization (FISH) technique. From each of six breast-fed and six formula-fed newborn infants, six fecal samples were obtained during the first 20 days of life. The microbial compositions of the samples were analyzed by culturing on specific media and by FISH, by using specific 16S rRNA-targeted oligonucleotide probes. The colonies growing on the media were identified by random amplified polymorphic DNA pattern analysis and by polymerase chain reaction amplification and subsequent analysis of the 16S rRNA gene. Molecular identification of the colonies showed that the selective media are insufficiently selective and unsuitable for quantitative analyses. Qualitative information from the culturing results combined with the data obtained by the FISH technique revealed initial colonization in all infants of a complex (adult-like) flora. After this initial colonization, a selection of bacterial strains began in all infants, in which Bifidobacterium strains played an important role. In all breast-fed infants, bifidobacteria become dominant, whereas in most formula-fed infants similar amounts of Bacteroides and bifidobacteria (approximately 40%) were found. The minor components of the fecal samples from breast-fed infants were mainly lactobacilli and streptococci; samples from formula-fed infants often contained staphylococci, Escherichia coli, and clostridia. This study confirms the differences in development of intestinal flora between breast-fed and formula-fed infants. The results obtained from the FISH technique were consistent. Although the repertoire of probes for this study was not yet complete, the FISH technique will probably become the method of reference for future studies designed to develop breast-fed-like intestinal flora in formula-fed infants.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2008
                10 September 2008
                : 8
                : 143
                Affiliations
                [1 ]Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, 28040, Madrid, Spain
                [2 ]Servei de Pediatria, Hospital Universitari Joan XXIII, 43007, Tarragona, Spain
                Article
                1471-2180-8-143
                10.1186/1471-2180-8-143
                2551609
                18783615
                d64af6f9-b99b-411c-ac4e-4e5b851341db
                Copyright © 2008 Jiménez et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2008
                : 10 September 2008
                Categories
                Research Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article