30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From markers to genome-based breeding in wheat

      ,
      Theoretical and Applied Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Genome plasticity a key factor in the success of polyploid wheat under domestication.

          Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and functional partitioning of bread wheat chromosome 3B.

              We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Theoretical and Applied Genetics
                Theor Appl Genet
                Springer Science and Business Media LLC
                0040-5752
                1432-2242
                March 2019
                January 23 2019
                March 2019
                : 132
                : 3
                : 767-784
                Article
                10.1007/s00122-019-03286-4
                30673804
                d60f7868-0263-416d-ad0b-75f89b19cb85
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article