Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A descriptive analysis of a representative sample of pediatric randomized controlled trials published in 2007

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Randomized controlled trials (RCTs) are the gold standard for trials assessing the effects of therapeutic interventions; therefore it is important to understand how they are conducted. Our objectives were to provide an overview of a representative sample of pediatric RCTs published in 2007 and assess the validity of their results.

          Methods

          We searched Cochrane Central Register of Controlled Trials using a pediatric filter and randomly selected 300 RCTs published in 2007. We extracted data on trial characteristics; outcomes; methodological quality; reporting; and registration and protocol characteristics. Trial registration and protocol availability were determined for each study based on the publication, an Internet search and an author survey.

          Results

          Most studies (83%) were efficacy trials, 40% evaluated drugs, and 30% were placebo-controlled. Primary outcomes were specified in 41%; 43% reported on adverse events. At least one statistically significant outcome was reported in 77% of trials; 63% favored the treatment group. Trial registration was declared in 12% of publications and 23% were found through an Internet search. Risk of bias (ROB) was high in 59% of trials, unclear in 33%, and low in 8%. Registered trials were more likely to have low ROB than non-registered trials (16% vs. 5%; p = 0.008). Effect sizes tended to be larger for trials at high vs. low ROB (0.28, 95% CI 0.21,0.35 vs. 0.16, 95% CI 0.07,0.25). Among survey respondents (50% response rate), the most common reason for trial registration was a publication requirement and for non-registration, a lack of familiarity with the process.

          Conclusions

          More than half of this random sample of pediatric RCTs published in 2007 was at high ROB and three quarters of trials were not registered. There is an urgent need to improve the design, conduct, and reporting of child health research.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmaceutical industry sponsorship and research outcome and quality: systematic review.

          To investigate whether funding of drug studies by the pharmaceutical industry is associated with outcomes that are favourable to the funder and whether the methods of trials funded by pharmaceutical companies differ from the methods in trials with other sources of support. Medline (January 1966 to December 2002) and Embase (January 1980 to December 2002) searches were supplemented with material identified in the references and in the authors' personal files. Data were independently abstracted by three of the authors and disagreements were resolved by consensus. 30 studies were included. Research funded by drug companies was less likely to be published than research funded by other sources. Studies sponsored by pharmaceutical companies were more likely to have outcomes favouring the sponsor than were studies with other sponsors (odds ratio 4.05; 95% confidence interval 2.98 to 5.51; 18 comparisons). None of the 13 studies that analysed methods reported that studies funded by industry was of poorer quality. Systematic bias favours products which are made by the company funding the research. Explanations include the selection of an inappropriate comparator to the product being investigated and publication bias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of registered and published primary outcomes in randomized controlled trials.

            As of 2005, the International Committee of Medical Journal Editors required investigators to register their trials prior to participant enrollment as a precondition for publishing the trial's findings in member journals. To assess the proportion of registered trials with results recently published in journals with high impact factors; to compare the primary outcomes specified in trial registries with those reported in the published articles; and to determine whether primary outcome reporting bias favored significant outcomes. MEDLINE via PubMed was searched for reports of randomized controlled trials (RCTs) in 3 medical areas (cardiology, rheumatology, and gastroenterology) indexed in 2008 in the 10 general medical journals and specialty journals with the highest impact factors. For each included article, we obtained the trial registration information using a standardized data extraction form. Of the 323 included trials, 147 (45.5%) were adequately registered (ie, registered before the end of the trial, with the primary outcome clearly specified). Trial registration was lacking for 89 published reports (27.6%), 45 trials (13.9%) were registered after the completion of the study, 39 (12%) were registered with no or an unclear description of the primary outcome, and 3 (0.9%) were registered after the completion of the study and had an unclear description of the primary outcome. Among articles with trials adequately registered, 31% (46 of 147) showed some evidence of discrepancies between the outcomes registered and the outcomes published. The influence of these discrepancies could be assessed in only half of them and in these statistically significant results were favored in 82.6% (19 of 23). Comparison of the primary outcomes of RCTs registered with their subsequent publication indicated that selective outcome reporting is prevalent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scope and impact of financial conflicts of interest in biomedical research: a systematic review.

              Despite increasing awareness about the potential impact of financial conflicts of interest on biomedical research, no comprehensive synthesis of the body of evidence relating to financial conflicts of interest has been performed. To review original, quantitative studies on the extent, impact, and management of financial conflicts of interest in biomedical research. Studies were identified by searching MEDLINE (January 1980-October 2002), the Web of Science citation database, references of articles, letters, commentaries, editorials, and books and by contacting experts. All English-language studies containing original, quantitative data on financial relationships among industry, scientific investigators, and academic institutions were included. A total of 1664 citations were screened, 144 potentially eligible full articles were retrieved, and 37 studies met our inclusion criteria. One investigator (J.E.B.) extracted data from each of the 37 studies. The main outcomes were the prevalence of specific types of industry relationships, the relation between industry sponsorship and study outcome or investigator behavior, and the process for disclosure, review, and management of financial conflicts of interest. Approximately one fourth of investigators have industry affiliations, and roughly two thirds of academic institutions hold equity in start-ups that sponsor research performed at the same institutions. Eight articles, which together evaluated 1140 original studies, assessed the relation between industry sponsorship and outcome in original research. Aggregating the results of these articles showed a statistically significant association between industry sponsorship and pro-industry conclusions (pooled Mantel-Haenszel odds ratio, 3.60; 95% confidence interval, 2.63-4.91). Industry sponsorship was also associated with restrictions on publication and data sharing. The approach to managing financial conflicts varied substantially across academic institutions and peer-reviewed journals. Financial relationships among industry, scientific investigators, and academic institutions are widespread. Conflicts of interest arising from these ties can influence biomedical research in important ways.
                Bookmark

                Author and article information

                Journal
                BMC Pediatr
                BMC Pediatrics
                BioMed Central
                1471-2431
                2010
                22 December 2010
                : 10
                : 96
                Affiliations
                [1 ]Alberta Research Centre for Health Evidence, Department of Pediatrics, University of Alberta. Edmonton, Canada
                [2 ]Division of Pediatric Emergency Medicine, Department of Pediatrics, University of Alberta. Edmonton, Canada
                [3 ]Women and Children's Health Research Institute, University of Alberta. Edmonton, Canada
                [4 ]Manitoba Institute of Child Health, Winnipeg, Canada
                Article
                1471-2431-10-96
                10.1186/1471-2431-10-96
                3018376
                21176224
                d5f07977-3fa4-4923-9d51-6d593b7a73c1
                Copyright ©2010 Hamm et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 August 2010
                : 22 December 2010
                Categories
                Correspondence

                Pediatrics
                Pediatrics

                Comments

                Comment on this article