1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A case report of Ovophis monitcola (Mountain pit-viper) envenoming in northeastern India resulting in prolonged coagulopathy

      , , , ,
      Toxicon
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse reactions to snake antivenom, and their prevention and treatment.

          Antivenom is the mainstay of treatment of snakebite envenoming. However, adverse reactions to snake antivenom that is available are common in many parts of the world where snakebite is prevalent. Both acute (anaphylactic or pyrogenic) and delayed (serum sickness type) reactions occur. Acute reactions are usually mild but severe systemic anaphylaxis may develop, often within an hour or so of exposure to antivenom. Serum sickness after antivenom has a delayed onset between 5 and 14 days after its administration. Ultimately, the prevention reactions will depend mainly on improving the quality of antivenom. Until these overdue improvements take place, doctors will have to depend on pharmacological prophylaxis, where the search for the best prophylactic agent is still on-going, as well as careful observation of patients receiving antivenom in preparation for prompt management of acute as well as delayed reactions when they occur.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite

            Venomous snakebite is considered the single most important cause of human injury from venomous animals worldwide. Coagulopathy is one of the commonest important systemic clinical syndromes and can be complicated by serious and life-threatening haemorrhage. Venom-induced consumption coagulopathy (VICC) is the commonest coagulopathy resulting from snakebite and occurs in envenoming by Viperid snakes, certain elapids, including Australian elapids, and a few Colubrid (rear fang) snakes. Procoagulant toxins activate the clotting pathway, causing a broad range of factor deficiencies depending on the particular procoagulant toxin in the snake venom. Diagnosis and monitoring of coagulopathy is problematic, particularly in resource-poor countries where further research is required to develop more reliable, cheap clotting tests. MEDLINE and EMBASE up to September 2013 were searched to identify clinical studies of snake envenoming with VICC. The UniPort database was searched for coagulant snake toxins. Despite preclinical studies demonstrating antivenom binding toxins (efficacy), there was less evidence to support clinical effectiveness of antivenom for VICC. There were no placebo-controlled trials of antivenom for VICC. There were 25 randomised comparative trials of antivenom for VICC, which compared two different antivenoms (ten studies), three different antivenoms (four), two or three different doses or repeat doses of antivenom (five), heparin treatment and antivenom (five), and intravenous immunoglobulin treatment and antivenom (one). There were 13 studies that compared two groups in which there was no randomisation, including studies with historical controls. There have been numerous observational studies of antivenom in VICC but with no comparison group. Most of the controlled trials were small, did not use the same method for assessing coagulopathy, varied the dose of antivenom, and did not provide complete details of the study design (primary outcomes, randomisation, and allocation concealment). Non-randomised trials including comparison groups without antivenom showed that antivenom was effective for some snakes (e.g., Echis), but not others (e.g., Australasian elapids). Antivenom is the major treatment for VICC, but there is currently little high-quality evidence to support effectiveness. Antivenom is not risk free, and adverse reactions can be quite common and potentially severe. Studies of heparin did not demonstrate it improved outcomes in VICC. Fresh frozen plasma appeared to speed the recovery of coagulopathy and should be considered in bleeding patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India

              The direct estimate of 46,000 snakebite deaths in India in 2005 (1 for every 2 HIV/AIDS deaths), based on verbal autopsies, renders unrealistic the total of only 47,000 snakebite deaths in the whole world in 2010, obtained indirectly as part of the “Global Burden of Disease 2010” study. Persistent underestimation of its true morbidity and mortality has made snakebite the most neglected of all the WHO's “neglected tropical diseases”, downgrading its public health importance. Strategies to address this neglect should include the improvement of antivenom, the only specific antidote to envenoming. To accommodate increased understanding of geographical intraspecific variation in venom composition and the range of snake species that are medically important in India, the design of antivenoms (choice of venom sources and species coverage) should be reconsidered. Methods of preclinical and clinical testing should be improved. The relatively new science of venomics involves techniques and strategies for assessing the toxin composition of snake venoms directly through proteomics-centred approaches or indirectly via high-throughput venom gland transcriptomics and bioinformatic analysis. Antivenomics is translational venomics: a proteomics-based protocol to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venoms. These approaches could revolutionize the preclinical assessment of antivenom efficacy, leading to a new generation of antivenoms that are clinically more effective.
                Bookmark

                Author and article information

                Journal
                Toxicon
                Toxicon
                Elsevier BV
                00410101
                June 2023
                June 2023
                : 229
                : 107147
                Article
                10.1016/j.toxicon.2023.107147
                d5e3ad42-84c6-4092-8a5f-7594af3e2ed9
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article