1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Impact of Pair-instability Mass Loss on the Binary Black Hole Mass Distribution

      , , , , , ,
      The Astrophysical Journal
      American Astronomical Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: not found
          • Article: not found

          Astropy: A community Python package for astronomy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Observation of Gravitational Waves from a Binary Black Hole Merger

              On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                1538-4357
                September 10 2019
                September 10 2019
                : 882
                : 2
                : 121
                Article
                10.3847/1538-4357/ab3981
                d5bc2d1e-be6d-42f4-9989-c3b2c42ad5ee
                © 2019

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article