36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What about me…? The PVT: a role for the paraventricular thalamus (PVT) in drug-seeking behavior

      article-commentary
      1 , 2 , 1 , 2
      Frontiers in Behavioral Neuroscience
      Frontiers Media S.A.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lack of effective pharmacotherapies to prevent relapse to drug taking emphasizes the importance of fully characterizing the brain pathways responsible for this behavior (Kalivas and McFarland, 2003). Recently, there have been attempts to more fully understand the brain circuitry responsible for drug-seeking behavior, beyond the well-characterized nodes such as the prefrontal cortex (PFC), nucleus accumbens (NAC), and ventral tegmental area (VTA). In this respect, the review of Martin-Fardon and Boutrel (2012) is important and timely and should serve to stimulate continued focus on the paraventricular thalamus (PVT) in the addiction field. Indeed, their review is an appropriate addition to the recent article “Emerging, re-emerging, and forgotten areas of the reward-circuit” (McGinty et al., 2011). The first purpose of this commentary is to reiterate this point, but to perhaps go one step further. Thus, in response to the authors' first question (i.e., whether the PVT should be considered part of the drug-seeking circuitry), we argue that there is sufficient anatomical and functional evidence to support this suggestion. For example, the PVT sends glutamatergic projections to the NAC and PFC (Christie et al., 1987; Bubser and Deutch, 1998; Vertes and Hoover, 2008), and a large percentage of these projections are branched, suggesting that a single PVT neuron can influence these areas simultaneously (Otake and Nakamura, 1998). PVT neurons also project to medial, central, and basal nuclei of the amygdala as well as the bed nucleus of stria terminalis (Vertes and Hoover, 2008). Importantly, glutamatergic efferents from the PVT are closely apposed to dopamine fibers in the NAC shell (Pinto et al., 2003) and stimulation of the PVT produces an efflux of dopamine in this brain region (Jones et al., 1989; Parsons et al., 2007). Earlier, lesion and Fos-mapping studies were the first to implicate the PVT as a reward-responsive site. For example, acute psychostimulant administration was found to activate the PVT (Deutch et al., 1998) and lesions of the PVT block the conditioned locomotor response to a cocaine-paired environment (Young and Deutch, 1998). More recent studies have extended these initial findings. Work by McNally's group, and ours, has demonstrated that lesions or chemical inactivation of the PVT suppresses drug-seeking behavior. For example, Hamlin et al. (2009) showed that lesions of the PVT prevent context-induced reinstatement of alcohol-seeking and Marchant et al. (2010) showed that intra-PVT infusion of a κ-opioid receptor agonist also inhibits this behavior. Our group has also shown that inactivation of the PVT using TTX or intra-PVT injections of the inhibitory peptide cocaine- and amphetamine-regulated transcript (CART) attenuates cocaine-primed reinstatement (James et al., 2010). This role likely extends to cue-induced cocaine-seeking, as the magnitude of reinstatement behavior is strongly correlated with Fos-activation in the PVT (Dayas et al., 2008; James et al., 2011a). Together, these data strongly support a functional role for the PVT in drug-seeking, however, it will be important for future studies to apply electrophysiological or optogenetic techniques to dissect the circuit-level changes involving PVT efferents onto reward-relevant brain regions (Cao et al., 2011). Designer receptors exclusively activated by designer drugs (DREADD) may also be useful in allowing for selective activation/inactivation of the PVT during reinstatement testing (Dong et al., 2010). The second question the authors' raise in their review is whether orexin (hypocretin) input within the PVT modulates reinstatement behavior. We agree with the authors that there is strong anatomical evidence implicating the PVT as a site of integration for drug-related hypothalamic signaling. However, the answer to this question appears less straightforward than their more general question regarding the PVT, and we believe that this second issue requires further study—a point acknowledged by Martin-Fardon and Boutrel. The authors cite recent data from their laboratory supporting a role for PVT orexin in reinstatement behavior. PVT infusions of orexin-A reinstated both extinguished cocaine- and sweetened condensed milk-seeking (SCM) behavior. Interestingly, moderate doses of orexin-A produced a stronger reinstatement of cocaine-seeking than for SCM, indicating drug-induced adaptation to orexin receptor expression/function in the PVT (Martin-Fardon et al., 2011). We recently tested the effect of intra-PVT administration of SB-334867, an orexin receptor 1 antagonist, on cue-induced cocaine-seeking. Given our previous demonstration that drug-cue sensitive PVT neurons are closely apposed by orexin terminals (Dayas et al., 2008), it was surprising that microinjections of SB-334867, at a dose also likely to block orexin receptor 2, had no effect on cue-induced reinstatement of cocaine-seeking (James et al., 2011b). In contrast, intra-VTA SB-334867 suppressed drug-seeking behavior (James et al., 2011b), consistent with studies showing that infusions of orexin peptide into the VTA enhance dopamine release in the NAC (Narita et al., 2006; Espana et al., 2010) and reinstate drug-seeking (Wang et al., 2009). Interestingly, we found reduced PVT Fos-expression after intra-VTA SB-334867 infusion, but increased Fos-protein in the NAC shell (James et al., 2012). Previous reports indicate that the NAC shell can exert an inhibitory influence over drug-seeking through its projections to the LH (Millan et al., 2010). Thus, it is possible that intra-VTA SB-334867 reduced PVT recruitment and increased NAC shell inhibitory output to the LH, resulting in attenuated drug-seeking behavior. How can these apparent contradictory findings relating to orexin signaling in the PVT be reconciled? One plausible explanation is that infusion of orexin-A into PVT may have engendered a stress-like response that evoked drug-seeking. Indeed, Martin-Fardon and Boutrel discuss recent evidence that orexin signaling in this region is important in regulating negative emotional states. For example, Li and colleagues report that intra-PVT infusion of TCSOX229, an orexin receptor-2 antagonist, attenuates the expression of anxiety-like behaviors produced by prior footshock stress (Li et al., 2010) as well as conditioned place aversion produced by precipitated morphine withdrawal (Li et al., 2011). Further, Heydendael and colleagues recently showed that in rats exposed to daily swim stress, orexin-A application increases the responsivity of PVT cells, and intra-PVT infusions of SB-334867 prior to daily swim stress inhibit the ACTH secretion in response to novel stress (Heydendael et al., 2011). Thus, it is possible that the disparate findings regarding orexin signaling in PVT may reflect a preferential role for orexin signaling in stress-induced reinstatement. Future studies using more sophisticated techniques may help resolve this issue.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat.

          The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including 'limbic' regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. Depending on the specific complement of emotionally associated information reaching PV/PT at any one time, PV/PT would appear positioned, by actions on the limbic forebrain, to direct behavior toward a particular outcome over a range of outcomes. (c) 2008 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain circuitry and the reinstatement of cocaine-seeking behavior.

            Recent studies have attempted to identify the neuroanatomical substrates underlying primed reinstatement of drug-seeking behavior. Identification of neuronal substrates will provide a logical rationale for designing pharmacological interventions in treating drug relapse. The objective was to identify brain circuitry that is shared between cue-, drug- and stress-primed reinstatement, as well as identifying aspects of brain circuitry that are distinct for each stimulus modality. The resulting circuit offers theoretical interpretations for consideration in future studies. Aspects of the circuitry mediating reinstatement can be identified with reasonable confidence. The role of the basolateral amygdala in cue-primed reinstatement, the role of the ventral tegmental area in drug-primed reinstatement and the role of adrenergic innervation of the extended amygdala in stress-primed reinstatement are well characterized. Also, all three modes for priming reinstatement may converge on the anterior cingulate cortex and have a final common output through the core of the nucleus accumbens. Lacunae in our understanding of the circuit were identified, especially with regard to how stress priming is conveyed from the extended amygdala to the shared anterior cingulate accumbens core circuit. The proposed convergence of priming stimuli into the glutamatergic projection from anterior cingulate to the accumbens core combined with the changes in glutamate transmission and signaling that accompany repeated psychostimulant administration points to the potential value of pharmacological agents that manipulate glutamate release or postsynaptic glutamate receptor signaling and trafficking in treating primed relapse in addicts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine.

              In this study, we investigated the role of orexinergic systems in dopamine-related behaviors induced by the mu-opioid receptor agonist morphine in rodents. Extensive coexpression of tyrosine hydroxylase with orexin receptors was observed in the mouse ventral tegmental area (VTA). The levels of dopamine and its major metabolites in the nucleus accumbens were markedly increased by the microinjection of orexin A and orexin B into the VTA. The subcutaneous morphine-induced place preference and hyperlocomotion observed in wild-type mice were abolished in mice that lacked the prepro-orexin gene. An intra-VTA injection of a selective orexin receptor antagonist SB334867A [1-(2-methylbenzoxazol-6-yl)-3-[1.5]naphthyridin-4-yl urea] significantly suppressed the morphine-induced place preference in rats. Furthermore, the increased level of dialysate dopamine produced by morphine in the mouse brain was significantly decreased by deletion of the prepro-orexin gene. These findings provide new evidence that orexin-containing neurons in the VTA are directly implicated in the rewarding effect and hyperlocomotion induced by morphine through activation of the mesolimbic dopamine pathway in rodents.
                Bookmark

                Author and article information

                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                06 March 2013
                2013
                : 7
                : 18
                Affiliations
                [1] 1Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle Newcastle, NSW, Australia
                [2] 2The Centre for Translational Neuroscience and Mental Heath Research, The Hunter Medical Research Institute Newcastle, NSW, Australia
                Author notes

                Edited by: Nuno Sousa, University of Minho, Portugal

                Reviewed by: Christina Dalla, University of Athens, Greece; Ana J. Rodrigues, University of Minho, Portugal

                Article
                10.3389/fnbeh.2013.00018
                3589664
                23509439
                d5aece59-c897-4d4c-b50a-7da72675c607
                Copyright © 2013 James and Dayas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 21 January 2013
                : 18 February 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 29, Pages: 3, Words: 2149
                Categories
                Neuroscience
                General Commentary Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article