0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions

      , , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoassays, which have gained popularity in clinical practice and modern biomedical research, play an increasingly important role in quantifying various analytes in biological samples. Despite their high sensitivity and specificity, as well as their ability to analyze multiple samples in a single run, immunoassays are plagued by the problem of lot-to-lot variance (LTLV). LTLV negatively affects assay accuracy, precision, and specificity, leading to considerable uncertainty in reported results. Therefore, maintaining consistency in technical performance over time presents a challenge in reproducing immunoassays. In this article, we share our two-decade-long experience and delve into the reasons for and locations of LTLV, as well as explore methods to mitigate its effects. Our investigation identifies potential contributing factors, including quality fluctuation in critical raw materials and deviations in manufacturing processes. These findings offer valuable insights to developers and researchers working with immunoassays, emphasizing the importance of considering lot-to-lot variance in assay development and application.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          How to measure and predict the molar absorption coefficient of a protein.

          The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.

            The stability of proteins in aqueous solution is routinely enhanced by cosolvents such as glycerol. Glycerol is known to shift the native protein ensemble to more compact states. Glycerol also inhibits protein aggregation during the refolding of many proteins. However, mechanistic insight into protein stabilization and prevention of protein aggregation by glycerol is still lacking. In this study, we derive mechanisms of glycerol-induced protein stabilization by combining the thermodynamic framework of preferential interactions with molecular-level insight into solvent-protein interactions gained from molecular simulations. Contrary to the common conception that preferential hydration of proteins in polyol/water mixtures is determined by the molecular size of the polyol and the surface area of the protein, we present evidence that preferential hydration of proteins in glycerol/water mixtures mainly originates from electrostatic interactions that induce orientations of glycerol molecules at the protein surface such that glycerol is further excluded. These interactions shift the native protein toward more compact conformations. Moreover, glycerol preferentially interacts with large patches of contiguous hydrophobicity where glycerol acts as an amphiphilic interface between the hydrophobic surface and the polar solvent. Accordingly, we propose that glycerol prevents protein aggregation by inhibiting protein unfolding and by stabilizing aggregation-prone intermediates through preferential interactions with hydrophobic surface regions that favor amphiphilic interface orientations of glycerol. These mechanisms agree well with experimental data available in the literature, and we discuss the extent to which these mechanisms apply to other cosolvents, including polyols, arginine, and urea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Site-selective modification strategies in antibody–drug conjugates

              Antibody–drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. This review summarises the advances made in the construction of homogenous ADCs. Antibody–drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                June 2023
                May 24 2023
                : 13
                : 11
                : 1835
                Article
                10.3390/diagnostics13111835
                37296687
                d55729a0-74f9-4586-84e2-6a8b81bc3acf
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article