29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantal neurotransmitter release at excitatory synapses depends on glutamate import into synaptic vesicles by vesicular glutamate transporters (VGLUTs). Of the three known transporters, VGLUT1 and VGLUT2 are expressed prominently in the adult brain, but during the first two weeks of postnatal development, VGLUT2 expression predominates. Targeted deletion of VGLUT1 in mice causes lethality in the third postnatal week. Glutamatergic neurotransmission is drastically reduced in neurons from VGLUT1-deficient mice, with a specific reduction in quantal size. The remaining activity correlates with the expression of VGLUT2. This reduction in glutamatergic neurotransmission can be rescued and enhanced with overexpression of VGLUT1. These results show that the expression level of VGLUTs determines the amount of glutamate that is loaded into vesicles and released and thereby regulates the efficacy of neurotransmission.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The expression of vesicular glutamate transporters defines two classes of excitatory synapse.

          The quantal release of glutamate depends on its transport into synaptic vesicles. Recent work has shown that a protein previously implicated in the uptake of inorganic phosphate across the plasma membrane catalyzes glutamate uptake by synaptic vesicles. However, only a subset of glutamate neurons expresses this vesicular glutamate transporter (VGLUT1). We now report that excitatory neurons lacking VGLUT1 express a closely related protein that has also been implicated in phosphate transport. Like VGLUT1, this protein localizes to synaptic vesicles and functions as a vesicular glutamate transporter (VGLUT2). The complementary expression of VGLUT1 and 2 defines two distinct classes of excitatory synapse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative ultrastructural analysis of hippocampal excitatory synapses.

            From three-dimensional reconstructions of CA1 excitatory synapses in the rodent hippocampus and in culture, we have estimated statistical distributions of active zone and postsynaptic density (PSD) sizes (average area approximately 0.04 micron2), the number of active zones per bouton (usually one), the number of docked vesicles per active zone (approximately 10), and the total number of vesicles per bouton (approximately 200), and we have determined relationships between these quantities, all of which vary from synapse to synapse but are highly correlated. These measurements have been related to synaptic physiology. In particular, we propose that the distribution of active zone areas can account for the distribution of synaptic release probabilities and that each active zone constitutes a release site as identified in the standard quantal theory attributable to Katz (1969).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons.

              Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Synaptic vesicles are loaded with neurotransmitter by means of specific vesicular transporters. Here we show that expression of BNPI, a vesicle-bound transporter associated with sodium-dependent phosphate transport, results in glutamate uptake by intracellular vesicles. Substrate specificity and energy dependence are very similar to glutamate uptake by synaptic vesicles. Stimulation of exocytosis--fusion of the vesicles with the cell membrane and release of their contents--resulted in quantal release of glutamate from BNPI-expressing cells. Furthermore, we expressed BNPI in neurons containing GABA (gamma-aminobutyric acid) and maintained them as cultures of single, isolated neurons that form synapses to themselves. After stimulation of these neurons, a component of the postsynaptic current is mediated by glutamate as it is blocked by a combination of the glutamate receptor antagonists, but is insensitive to a GABA(A) receptor antagonist. We conclude that BNPI functions as vesicular glutamate transporter and that expression of BNPI suffices to define a glutamatergic phenotype in neurons.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 04 2004
                May 04 2004
                April 21 2004
                May 04 2004
                : 101
                : 18
                : 7158-7163
                Article
                10.1073/pnas.0401764101
                406482
                15103023
                d54fbfc0-387e-49fc-940d-4e0ce5a21358
                © 2004
                History

                Comments

                Comment on this article