0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward exact predictions of spin-phonon relaxation times: An ab initio implementation of open quantum systems theory

      research-article
      Science Advances
      American Association for the Advancement of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spin-phonon coupling is the main driver of spin relaxation and decoherence in solid-state semiconductors at finite temperature. Controlling this interaction is a central problem for many disciplines, ranging from magnetic resonance to quantum technologies. Spin relaxation theories have been developed for almost a century but often use a phenomenological description of phonons and their coupling to spin, resulting in a nonpredictive tool and hindering our detailed understanding of spin dynamics. Here, we combine time-local master equations up to the fourth order with advanced electronic structure methods and perform predictions of spin-phonon relaxation time for a series of solid-state coordination compounds based on both transition metals and lanthanide Kramers ions. The agreement between experiments and simulations demonstrates that an accurate, universal, and fully ab initio implementation of spin relaxation theory is possible, thus paving the way to a systematic study of spin-phonon relaxation in solid-state materials.

          Abstract

          Abstract

          Ab initio open quantum system theory can predict spin-phonon relaxation time in solid-state magnetic systems.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

            The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rationale for mixing exact exchange with density functional approximations

                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing - original draftRole: Writing - review & editing
                Journal
                Sci Adv
                Sci Adv
                sciadv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                August 2022
                05 August 2022
                : 8
                : 31
                : eabn7880
                Affiliations
                [1]School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland.
                Author notes
                Author information
                https://orcid.org/0000-0002-1948-4434
                Article
                abn7880
                10.1126/sciadv.abn7880
                9355363
                35930642
                d52bb901-70a5-49ad-adf0-d5418f3ce01d
                Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

                This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2021
                : 23 June 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000781, European Research Council;
                Award ID: 948493
                Categories
                Research Article
                Physical and Materials Sciences
                SciAdv r-articles
                Chemical Physics
                Condensed Matter Physics
                Physics
                Custom metadata
                Eunice Diego

                Comments

                Comment on this article