3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cardiac Imaging in Patients With Ventricular Tachycardia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ventricular tachycardia (VT) is a major cause of sudden cardiac death. The majority of malignant VTs occur in patients with structural heart disease. Multimodality imaging techniques play an integral role in determining the underlying etiology and prognostic significance of VT. In recent years, advances in imaging technology have enabled characterization of the structural arrhythmogenic substrate in patients with VT with increasing precision. In parallel with these advances, the role of cardiac imaging has expanded from a largely diagnostic tool to an adjunctive tool to guide interventional approaches for treatment of VT. Invasive and noninvasive imaging techniques, often used in combination, have made it possible to integrate structural and electrophysiological information during VT ablation procedures. An important area of current development is the use of noninvasive imaging techniques based on body surface electrocardiographic mapping to elucidate the mechanisms of VT. In the future, these techniques may provide a priori information on mechanisms of VT in patients undergoing interventional procedures. This review provides an overview of the role of cardiac imaging in patients with VT.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy.

          Risk stratification of patients with nonischemic dilated cardiomyopathy is primarily based on left ventricular ejection fraction (LVEF). Superior prognostic factors may improve patient selection for implantable cardioverter-defibrillators (ICDs) and other management decisions. To determine whether myocardial fibrosis (detected by late gadolinium enhancement cardiovascular magnetic resonance [LGE-CMR] imaging) is an independent and incremental predictor of mortality and sudden cardiac death (SCD) in dilated cardiomyopathy. Prospective, longitudinal study of 472 patients with dilated cardiomyopathy referred to a UK center for CMR imaging between November 2000 and December 2008 after presence and extent of midwall replacement fibrosis were determined. Patients were followed up through December 2011. Primary end point was all-cause mortality. Secondary end points included cardiovascular mortality or cardiac transplantation; an arrhythmic composite of SCD or aborted SCD (appropriate ICD shock, nonfatal ventricular fibrillation, or sustained ventricular tachycardia); and a composite of HF death, HF hospitalization, or cardiac transplantation. Among the 142 patients with midwall fibrosis, there were 38 deaths (26.8%) vs 35 deaths (10.6%) among the 330 patients without fibrosis (hazard ratio [HR], 2.96 [95% CI, 1.87-4.69]; absolute risk difference, 16.2% [95% CI, 8.2%-24.2%]; P < .001) during a median follow-up of 5.3 years (2557 patient-years of follow-up). The arrhythmic composite was reached by 42 patients with fibrosis (29.6%) and 23 patients without fibrosis (7.0%) (HR, 5.24 [95% CI, 3.15-8.72]; absolute risk difference, 22.6% [95% CI, 14.6%-30.6%]; P < .001). After adjustment for LVEF and other conventional prognostic factors, both the presence of fibrosis (HR, 2.43 [95% CI, 1.50-3.92]; P < .001) and the extent (HR, 1.11 [95% CI, 1.06-1.16]; P < .001) were independently and incrementally associated with all-cause mortality. Fibrosis was also independently associated with cardiovascular mortality or cardiac transplantation (by fibrosis presence: HR, 3.22 [95% CI, 1.95-5.31], P < .001; and by fibrosis extent: HR, 1.15 [95% CI, 1.10-1.20], P < .001), SCD or aborted SCD (by fibrosis presence: HR, 4.61 [95% CI, 2.75-7.74], P < .001; and by fibrosis extent: HR, 1.10 [95% CI, 1.05-1.16], P < .001), and the HF composite (by fibrosis presence: HR, 1.62 [95% CI, 1.00-2.61], P = .049; and by fibrosis extent: HR, 1.08 [95% CI, 1.04-1.13], P < .001). Addition of fibrosis to LVEF significantly improved risk reclassification for all-cause mortality and the SCD composite (net reclassification improvement: 0.26 [95% CI, 0.11-0.41]; P = .001 and 0.29 [95% CI, 0.11-0.48]; P = .002, respectively). Assessment of midwall fibrosis with LGE-CMR imaging provided independent prognostic information beyond LVEF in patients with nonischemic dilated cardiomyopathy. The role of LGE-CMR in the risk stratification of dilated cardiomyopathy requires further investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.

            We studied the prognostic implications of midwall fibrosis in dilated cardiomyopathy (DCM) in a prospective longitudinal study. Risk stratification of patients with nonischemic DCM in the era of device implantation is problematic. Approximately 30% of patients with DCM have midwall fibrosis as detected by late gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR), which may increase susceptibility to arrhythmia and progression of heart failure. Consecutive DCM patients (n = 101) with the presence or absence of midwall fibrosis were followed up prospectively for 658 +/- 355 days for events. Midwall fibrosis was present in 35% of patients and was associated with a higher rate of the predefined primary combined end point of all-cause death and hospitalization for a cardiovascular event (hazard ratio 3.4, p = 0.01). Multivariate analysis showed midwall fibrosis as the sole significant predictor of death or hospitalization. However, there was no significant difference in all-cause mortality between the 2 groups. Midwall fibrosis also predicted secondary outcome measures of sudden cardiac death (SCD) or ventricular tachycardia (VT) (hazard ratio 5.2, p = 0.03). Midwall fibrosis remained predictive of SCD/VT after correction for baseline differences in left ventricular ejection fraction between the 2 groups. In DCM, midwall fibrosis determined by CMR is a predictor of the combined end point of all-cause mortality and cardiovascular hospitalization, which is independent of ventricular remodeling. In addition, midwall fibrosis by CMR predicts SCD/VT. This suggests a potential role for CMR in the risk stratification of patients with DCM, which may have value in determining the need for device therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality.

              Accurate risk stratification is crucial for effective treatment planning after myocardial infarction (MI). Previous studies suggest that the peri-infarct border zone may be an important arrhythmogenic substrate. In this pilot study, we tested the hypothesis that the extent of the peri-infarct zone quantified by contrast-enhanced cardiac magnetic resonance (CMR) is an independent predictor of post-MI mortality. We studied 144 patients with documented coronary artery disease and abnormal myocardial delayed enhancement (MDE) consistent with MI. A computer-assisted, semiautomatic algorithm quantified the total infarct size and divided it into the core and peri-infarct regions based on signal-intensity thresholds (>3 SDs and 2 to 3 SDs above remote normal myocardium, respectively). The peri-infarct zone was normalized as a percentage of the total infarct size (%MDE(periphery)). After a median follow-up of 2.4 years, 29 (20%) patients died. Patients with an above-median %MDE(periphery) were at higher risk for death compared with those with a below-median %MDE(periphery) (28% versus 13%, log-rank P<0.01). Multivariable analysis showed that left ventricular systolic volume index and %MDE(periphery) were the strongest predictors of all-cause mortality (adjusted hazard ratio [HR] for %MDE(periphery), 1.45 per 10% increase; P=0.002) and cardiovascular mortality (adjusted HR, 1.51 per 10% increase; P=0.009). Similarly, after adjusting for age and left ventricular ejection fraction, %MDE(periphery) maintained strong and independent associations with all-cause mortality (adjusted HR, 1.42; P=0.005) and cardiovascular mortality (adjusted HR, 1.49; P=0.01). In patients with a prior MI, the extent of the peri-infarct zone characterized by CMR provides incremental prognostic value beyond left ventricular systolic volume index or ejection fraction. Infarct characteristics by CMR may prove to be a unique and valuable noninvasive predictor of post-MI mortality.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                December 19 2017
                December 19 2017
                : 136
                : 25
                : 2491-2507
                Affiliations
                [1 ]Department of Cardiac Electrophysiology, Liverpool Heart and Chest Hospital, UK (S.M.)
                [2 ]L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
                [3 ]Inria Sophia Antipolis, Sophia Antipolis-Méditerranée, France (M.S.)
                [4 ]Division of Cardiology, University of Michigan, Ann Arbor (F.B.).
                Article
                10.1161/CIRCULATIONAHA.117.029349
                29255125
                d4e5c5ff-817a-455c-a840-f439d905eb10
                © 2017
                History

                Comments

                Comment on this article