27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in heterosubtypic antibody responses during the first year of the 2009 A(H1N1) influenza pandemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seropositivity to avian influenza (AI) via low-level antibody titers has been reported in the general population and poultry-exposed individuals, raising the question whether these findings reflect true infection with AI or cross-reactivity. Here we investigated serological profiles against human and avian influenza viruses in the general population using a protein microarray platform. We hypothesized that higher antibody diversity across recent H1 and H3 influenza viruses would be associated with heterosubtypic reactivity to older pandemic- and AI viruses. We found significant heterogeneity in antibody profiles. Increased antibody diversity to seasonal influenza viruses was associated with low-level heterosubtypic antibodies to H9 and H7, but not to H5 AI virus. Individuals exposed to the recent 2009 A(H1N1) pandemic showed higher heterosubtypic reactivity. We show that there is a complex interplay between prior exposures to seasonal and recent pandemic influenza viruses and the development of heterosubtypic antibody reactivity to animal influenza viruses.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

            Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus.

              A new pandemic influenza A (H1N1) virus has emerged, causing illness globally, primarily in younger age groups. To assess the level of preexisting immunity in humans and to evaluate seasonal vaccine strategies, we measured the antibody response to the pandemic virus resulting from previous influenza infection or vaccination in different age groups. Using a microneutralization assay, we measured cross-reactive antibodies to pandemic H1N1 virus (2009 H1N1) in stored serum samples from persons who either donated blood or were vaccinated with recent seasonal or 1976 swine influenza vaccines. A total of 4 of 107 persons (4%) who were born after 1980 had preexisting cross-reactive antibody titers of 40 or more against 2009 H1N1, whereas 39 of 115 persons (34%) born before 1950 had titers of 80 or more. Vaccination with seasonal trivalent inactivated influenza vaccines resulted in an increase in the level of cross-reactive antibody to 2009 H1N1 by a factor of four or more in none of 55 children between the ages of 6 months and 9 years, in 12 to 22% of 231 adults between the ages of 18 and 64 years, and in 5% or less of 113 adults 60 years of age or older. Seasonal vaccines that were formulated with adjuvant did not further enhance cross-reactive antibody responses. Vaccination with the A/New Jersey/1976 swine influenza vaccine substantially boosted cross-reactive antibodies to 2009 H1N1 in adults. Vaccination with recent seasonal nonadjuvanted or adjuvanted influenza vaccines induced little or no cross-reactive antibody response to 2009 H1N1 in any age group. Persons under the age of 30 years had little evidence of cross-reactive antibodies to the pandemic virus. However, a proportion of older adults had preexisting cross-reactive antibodies. 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 February 2016
                2016
                : 6
                : 20385
                Affiliations
                [1 ]Viroscience Department, Erasmus Medical Center , Rotterdam, the Netherlands
                [2 ]Virology Department, Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment , Bilthoven, the Netherlands
                [3 ]Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme , Ho Chi Minh City, Vietnam
                [4 ]Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford , Oxford, UK
                Author notes
                Article
                srep20385
                10.1038/srep20385
                4745054
                26853924
                d4de6cf1-5199-43f1-a8f1-1d068f110d33
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 September 2015
                : 31 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article