13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape

      , , , , ,
      Electronics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As artificial intelligence (AI) has been highly advancing in the last decade, machine learning (ML)-enabled medical devices are increasingly used in healthcare. In this study, we collected publicly available information on AI/ML-enabled medical devices approved by the FDA in the United States, as of the latest update on 19 October 2023. We performed comprehensive analysis of a total of 691 FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices and offer an in-depth analysis of clearance pathways, approval timeline, regulation type, medical specialty, decision type, recall history, etc. We found a significant surge in approvals since 2018, with clear dominance of the radiology specialty in the application of machine learning tools, attributed to the abundant data from routine clinical data. The study also reveals a reliance on the 510(k)-clearance pathway, emphasizing its basis on substantial equivalence and often bypassing the need for new clinical trials. Also, it notes an underrepresentation of pediatric-focused devices and trials, suggesting an opportunity for expansion in this demographic. Moreover, the geographical limitation of clinical trials, primarily within the United States, points to a need for more globally inclusive trials to encompass diverse patient demographics. This analysis not only maps the current landscape of AI/ML-enabled medical devices but also pinpoints trends, potential gaps, and areas for future exploration, clinical trial practices, and regulatory approaches. In conclusion, our analysis sheds light on the current state of FDA-approved AI/ML-enabled medical devices and prevailing trends, contributing to a wider comprehension.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artificial intelligence in radiology

            Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this O pinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning

              The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ELECGJ
                Electronics
                Electronics
                MDPI AG
                2079-9292
                February 2024
                January 24 2024
                : 13
                : 3
                : 498
                Article
                10.3390/electronics13030498
                d4d08a31-c9f2-46a9-a7dc-34604177b2c2
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article