8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graphene Multi-Frequency Broadband and Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance

      , , , , , , , , ,
      Electronics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When surface plasmon resonance (SPR) occurs, the incident light is absorbed by the surface of the SPR structure, thus minimizing the intensity of the reflected light. Therefore, the SPR method is adopted in this paper to achieve perfect absorption of the absorbent. In this paper, we first propose a multi-frequency broadband absorber structure based on graphene SPR, which uses the continuous resonance of patterned graphene surface plasmon in the frequency spectrum to form a multi-frequency broadband absorption. In this simulation, a sandwich-stack structure was adopted, whereby the patterned graphene is situated on top of the SiO2 layer and the metal layer. The broad-band absorption bands of the absorber were obtained as 4.14–4.38 THz, 5.78–6.36 THz, and 7.87–8.66 THz through the analog simulation of finite-difference time-domain method (FDTD) solutions. Then, based on the multi-layer resonant unit structure, through the superposition and combination of absorbing units responding to different frequency bands, the perfect absorption of ultra-wideband is achieved. The data results illustrate that the total absorption bandwidth of the absorber is 2.26 THz, and the relative absorption bandwidth Bw is equal to 28.93%. The electric field in X-Y direction of the absorber in the perfect absorption band is analyzed, respectively, and the dynamic tunability of the absorber is studied. Finally, we studied whether the absorbing structure still has efficient absorption characteristics for the two polarization modes when the incident angle is changed from 0° to 70°. The structure model proposed has potential value for application in terahertz photoelectric detection, filtering, and electromagnetic shielding.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual-band tunable perfect metamaterial absorber in the THz range.

            In this paper, a dual-band perfect absorber, composed of a periodically patterned elliptical nanodisk graphene structure and a metal ground plane spaced by a thin SiO(2) dielectric layer, is proposed and investigated. Numerical results reveal that the absorption spectrum of the graphene-based structure displays two perfect absorption peaks in the terahertz band, corresponding to the absorption value of 99% at 35μm and 97%at 59μm, respectively. And the resonance frequency of the absorber can be tunned by controlling the Fermi level of graphene layer. Further more, it is insensitive to the polarization and remains very high over a wide angular range of incidence around ±60(0). Compared with the previous graphene dual-band perfect absorption, our absorber only has one shape which can greatly simplify the manufacturing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance

              An ultra-wideband solar energy absorber composed of a Ti ring and a SiO 2 –Si 3 N 4 –Ti thin film is proposed. It was found that the absorption efficiency of the absorber was over 90% with a broadband of 3683 nm. Solar energy absorption is a very important field in photonics. The successful development of an efficient, wide-band solar absorber is an extremely powerful driver in this field. We propose an ultra-wideband (UWB) solar energy absorber composed of a Ti ring and SiO 2 –Si 3 N 4 –Ti thin films. In the range of 300–4000 nm, the wide band has an absorption efficiency of more than 90% and can reach 3683 nm, and it has four absorption peaks with a high absorptivity. Moreover, the weighted average absorption efficiency of the solar absorber under AM 1.5 is maintained above 97.03%, which indicates it has great potential for use in the field of solar energy absorption. Moreover, we proved that the polarization is insensitive by analyzing the absorption characteristics at arbitrary polarization angles. For both the transverse electric (TE) and transverse magnetic (TM) modes, the UWB absorption is maintained at more than 90% in the wide incidence angle range of 60°. The UWB solar energy absorber has great potential for use in a variety of applications, such as converting solar light and heat into electricity for public use and reducing the side effects of coal-fired power generation. It can also be used in information detection and infrared thermal imaging owing to its UWB characteristics.
                Bookmark

                Author and article information

                Contributors
                Journal
                ELECGJ
                Electronics
                Electronics
                MDPI AG
                2079-9292
                June 2023
                June 13 2023
                : 12
                : 12
                : 2655
                Article
                10.3390/electronics12122655
                d4b09307-d7ac-4e17-871b-1922ddc3ebce
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article