3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health

      1 , 2
      Chemistry – A European Journal
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.

          Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine

              Aerobic life in humans imposes the hazard of excess oxidation in cell and tissue components that may compromise cell function and viability. The formation and accumulation of oxidized products in biomolecules such as proteins and lipids are observed in various pathologies and during the normal aging process. This review article aims to integrate some early and remarkable discoveries in the field, with more recent developments that helped to define a causative role of oxygen radicals, nitric oxide, and peroxynitrite in human physiology and pathology. These aspects of human redox biochemistry contribute to the understanding of the molecular basis of diseases and aging and open avenues for the development of preventive and therapeutic strategies in molecular medicine. Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide ( • NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of • NO are modulated by its fast reaction with superoxide radical ( O 2 • − ), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and • NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of • NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Chemistry – A European Journal
                Chemistry A European J
                Wiley
                0947-6539
                1521-3765
                April 22 2022
                February 22 2022
                April 22 2022
                : 28
                : 23
                Affiliations
                [1 ]Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
                [2 ]Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
                Article
                10.1002/chem.202104342
                d450eb2a-037f-42f3-8456-fe9539916d36
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article